16.2 Shear of Open Section Beams 485
Fig.16.6
Shear loaded Z-section of Example 16.1.
ThesecondmomentsofareaofthesectionhavepreviouslybeendeterminedinExample15.14andare
Ixx=
h^3 t
3
, Iyy=
h^3 t
12
, Ixy=
h^3 t
8
SubstitutingthesevaluesinEq.(i),weobtain
qs=
Sy
h^3
∫s
0
(10.32x−6.84y)ds (ii)
Onthebottomflange12,y=−h/2andx=−h/ 2 +s 1 ,where0≤s 1 ≤h/2.Therefore,
q 12 =
Sy
h^3
∫s^1
0
(10.32s 1 −1.74h)ds 1
giving
q 12 =
Sy
h^3
(
5.16s^21 −1.74hs 1
)
(iii)
Hence at 1 (s 1 =0),q 1 =0, and at 2 (s 1 =h/2),q 2 =0.42Sy/h. Further examination of Eq. (iii) shows
thattheshearflowdistributiononthebottomflangeisparabolicwithachangeofsign(i.e.,direction)
ats 1 =0.336h.Forvaluesofs 1 <0.336h,q 12 isnegativeandthereforeintheoppositedirectiontos 1.
Intheweb23,y=−h/ 2 +s 2 ,where0≤s 2 ≤handx=0.Then
q 23 =
Sy
h^3
∫s^2
0
(3.42h−6.84s 2 )ds 2 +q 2 (iv)