16.3 Shear of Closed Section Beams 491
If the moment center is chosen to coincide with the lines of action ofSxandSy, then Eq. (16.17)
reducesto
0 =
∮
pqbds+ 2 Aqs,0 (16.18)
Theunknownshearflowqs,0followsfromeitherofEqs.(16.17)or(16.18).
Itisworthwhiletoconsidersomeoftheimplicationsoftheaboveprocess.Equation(16.14)repre-
sentstheshearflowdistributioninanopensectionbeamfortheconditionofzerotwist.Therefore,by
“cutting”theclosedsectionbeamofFig.16.11(a)todetermineqb,weare,ineffect,replacingtheshear
loadsofFig.16.11(a)byshearloadsSxandSyactingthroughtheshearcenteroftheresulting“open”
sectionbeamtogetherwithatorqueTasshowninFig.16.11(b).WeshallshowinSection17.1that
theapplicationofatorquetoaclosedsectionbeamresultsinaconstantshearflow.Inthiscase,the
constantshearflowqs,0correspondstothetorquebutwillhavedifferentvaluesfordifferentpositionsof
the“cut,”sincethecorrespondingvarious“open”sectionbeamswillhavedifferentlocationsfortheir
shearcenters.Anadditionaleffectof“cutting”thebeamistoproduceastaticallydeterminatestructure,
sincetheqbshearflowsareobtainedfromstaticalequilibriumconsiderations.Itfollowsthatasingle
cellclosedsectionbeamsupportingshearloadsissinglyredundant.
16.3.1 Twist and Warping of Shear-Loaded Closed Section Beams
Shearloadswhicharenotappliedthroughtheshearcenterofaclosedsectionbeamcausecrosssections
totwistandwarp;inotherwords,inadditiontorotation,theysufferoutofplaneaxialdisplacements.
Expressionsforthesequantitiesmaybederivedintermsoftheshearflowdistributionqsasfollows.
Sinceq=τtandτ=Gγ(seeChapter1),thenwecanexpressqsintermsofthewarpingandtangential
displacementswandvtofapointinthebeamwallbyusingEq.(16.6).Thus,
qs=Gt
(
∂w
∂s
+
∂vt
∂z
)
(16.19)
Substitutingfor∂vt/∂zfromEq.(16.10),wehave
qs
Gt
=
∂w
∂s
+p
dθ
dz
+
du
dz
cosψ+
dv
dz
sinψ (16.20)
IntegratingEq.(16.20)withrespecttosfromthechosenoriginforsandnotingthatGmayalsobea
functionofs,weobtain
∫s
0
qs
Gt
ds=
∫s
0
∂w
∂s
ds+
dθ
dz
∫s
0
pds+
du
dz
∫s
0
cosψds+
dv
dz
∫s
0
sinψds
or
∫s
0
qs
Gt
ds=
∫s
0
∂w
∂s
ds+
dθ
dz
∫s
0
pds+
du
dz
∫s
0
dx+
dv
dz
∫s
0
dy