Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
16.3 Shear of Closed Section Beams 491

If the moment center is chosen to coincide with the lines of action ofSxandSy, then Eq. (16.17)
reducesto


0 =


pqbds+ 2 Aqs,0 (16.18)

Theunknownshearflowqs,0followsfromeitherofEqs.(16.17)or(16.18).
Itisworthwhiletoconsidersomeoftheimplicationsoftheaboveprocess.Equation(16.14)repre-
sentstheshearflowdistributioninanopensectionbeamfortheconditionofzerotwist.Therefore,by
“cutting”theclosedsectionbeamofFig.16.11(a)todetermineqb,weare,ineffect,replacingtheshear
loadsofFig.16.11(a)byshearloadsSxandSyactingthroughtheshearcenteroftheresulting“open”
sectionbeamtogetherwithatorqueTasshowninFig.16.11(b).WeshallshowinSection17.1that
theapplicationofatorquetoaclosedsectionbeamresultsinaconstantshearflow.Inthiscase,the
constantshearflowqs,0correspondstothetorquebutwillhavedifferentvaluesfordifferentpositionsof
the“cut,”sincethecorrespondingvarious“open”sectionbeamswillhavedifferentlocationsfortheir
shearcenters.Anadditionaleffectof“cutting”thebeamistoproduceastaticallydeterminatestructure,
sincetheqbshearflowsareobtainedfromstaticalequilibriumconsiderations.Itfollowsthatasingle
cellclosedsectionbeamsupportingshearloadsissinglyredundant.


16.3.1 Twist and Warping of Shear-Loaded Closed Section Beams


Shearloadswhicharenotappliedthroughtheshearcenterofaclosedsectionbeamcausecrosssections
totwistandwarp;inotherwords,inadditiontorotation,theysufferoutofplaneaxialdisplacements.
Expressionsforthesequantitiesmaybederivedintermsoftheshearflowdistributionqsasfollows.
Sinceq=τtandτ=Gγ(seeChapter1),thenwecanexpressqsintermsofthewarpingandtangential
displacementswandvtofapointinthebeamwallbyusingEq.(16.6).Thus,


qs=Gt

(

∂w
∂s

+

∂vt
∂z

)

(16.19)

Substitutingfor∂vt/∂zfromEq.(16.10),wehave


qs
Gt

=

∂w
∂s

+p


dz

+

du
dz

cosψ+

dv
dz

sinψ (16.20)

IntegratingEq.(16.20)withrespecttosfromthechosenoriginforsandnotingthatGmayalsobea
functionofs,weobtain


∫s

0

qs
Gt

ds=

∫s

0

∂w
∂s

ds+


dz

∫s

0

pds+

du
dz

∫s

0

cosψds+

dv
dz

∫s

0

sinψds

or
∫s


0

qs
Gt

ds=

∫s

0

∂w
∂s

ds+


dz

∫s

0

pds+

du
dz

∫s

0

dx+

dv
dz

∫s

0

dy
Free download pdf