16.3 Shear of Closed Section Beams 491If the moment center is chosen to coincide with the lines of action ofSxandSy, then Eq. (16.17)
reducesto
0 =∮
pqbds+ 2 Aqs,0 (16.18)Theunknownshearflowqs,0followsfromeitherofEqs.(16.17)or(16.18).
Itisworthwhiletoconsidersomeoftheimplicationsoftheaboveprocess.Equation(16.14)repre-
sentstheshearflowdistributioninanopensectionbeamfortheconditionofzerotwist.Therefore,by
“cutting”theclosedsectionbeamofFig.16.11(a)todetermineqb,weare,ineffect,replacingtheshear
loadsofFig.16.11(a)byshearloadsSxandSyactingthroughtheshearcenteroftheresulting“open”
sectionbeamtogetherwithatorqueTasshowninFig.16.11(b).WeshallshowinSection17.1that
theapplicationofatorquetoaclosedsectionbeamresultsinaconstantshearflow.Inthiscase,the
constantshearflowqs,0correspondstothetorquebutwillhavedifferentvaluesfordifferentpositionsof
the“cut,”sincethecorrespondingvarious“open”sectionbeamswillhavedifferentlocationsfortheir
shearcenters.Anadditionaleffectof“cutting”thebeamistoproduceastaticallydeterminatestructure,
sincetheqbshearflowsareobtainedfromstaticalequilibriumconsiderations.Itfollowsthatasingle
cellclosedsectionbeamsupportingshearloadsissinglyredundant.
16.3.1 Twist and Warping of Shear-Loaded Closed Section Beams
Shearloadswhicharenotappliedthroughtheshearcenterofaclosedsectionbeamcausecrosssections
totwistandwarp;inotherwords,inadditiontorotation,theysufferoutofplaneaxialdisplacements.
Expressionsforthesequantitiesmaybederivedintermsoftheshearflowdistributionqsasfollows.
Sinceq=τtandτ=Gγ(seeChapter1),thenwecanexpressqsintermsofthewarpingandtangential
displacementswandvtofapointinthebeamwallbyusingEq.(16.6).Thus,
qs=Gt(
∂w
∂s+
∂vt
∂z)
(16.19)
Substitutingfor∂vt/∂zfromEq.(16.10),wehave
qs
Gt=
∂w
∂s+pdθ
dz+
du
dzcosψ+dv
dzsinψ (16.20)IntegratingEq.(16.20)withrespecttosfromthechosenoriginforsandnotingthatGmayalsobea
functionofs,weobtain
∫s0qs
Gtds=∫s0∂w
∂sds+dθ
dz∫s0pds+du
dz∫s0cosψds+dv
dz∫s0sinψdsor
∫s
0qs
Gtds=∫s0∂w
∂sds+dθ
dz∫s0pds+du
dz∫s0dx+dv
dz∫s0dy