Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
16.3 Shear of Closed Section Beams 493

Also,sinceapuretorqueisapplied,theresultantofanyinternaldirectstresssystemmustbezero;in
otherwords,itisself-equilibrating.Thus,


Resultantaxialload=


σtds

whereσisthedirectstressatanypointinthecrosssection.Then,fromtheaboveassumption


0 =


wtds

or


0 =


(ws−w 0 )tds

sothat


w 0 =


wstds

tds

(16.26)

16.3.2 Shear Center


TheshearcenterofaclosedsectionbeamislocatedinasimilarmannertothatdescribedinSection16.2.1
foropensectionbeams.Therefore,todeterminethecoordinateξS(referredtoanyconvenientpointin
thecrosssection)oftheshearcenterSoftheclosedsectionbeamshowninFig.16.12,weapplyan
arbitraryshearloadSythroughS,calculatethedistributionofshearflowqsduetoSy,andthenequate
internalandexternalmoments.However,adifficultyarisesinobtainingqs,0,since,atthisstage,itis
impossibletoequateinternalandexternalmomentstoproduceanequationsimilartoEq.(16.17),as
thepositionofSy,isunknown.Wethereforeusetheconditionthatashearloadactingthroughtheshear


Fig.16.12


Shear center of a closed section beam.

Free download pdf