506 CHAPTER 17 Torsion of Beams
Itfollowsthatθ=Az+B,u=Cz+D,v=Ez+F,whereA,B,C,D,E,andFareunknownconstants.
Thus,θ,u,andvarealllinearfunctionsofz.
Equation(16.22),relatingtherateoftwisttothevariableshearflowqsdevelopedinashearloaded
closedsectionbeam,isalsovalidforthecaseqs=q=constant.Hence,
dθ
dz=
q
2 A∮
ds
Gtwhichbecomes,onsubstitutingforqfromEq.(17.1)
dθ
dz=
T
4 A^2
∮
ds
Gt(17.4)
Thewarpingdistributionproducedbyavaryingshearflow,asdefinedbyEq.(16.25)foraxeshaving
theiroriginatthecenteroftwist,isalsoapplicabletothecaseofaconstantshearflow.Thus,
ws−w 0 =q∫s0ds
Gt−
AOs
Aq∮
ds
GtReplacingqfromEq.(17.1),wehave
ws−w 0 =Tδ
2 A(
δOs
δ−
AOs
A)
(17.5)
where
δ=∮
ds
Gtand δOs=∫s0ds
GtThesignofthewarpingdisplacementinEq.(17.5)isgovernedbythesignoftheappliedtorqueTand
thesignsoftheparametersδOsandAOs.Havingspecifiedinitiallythatapositivetorqueisanticlockwise,
thesignsofδOsandAOsarefixedinthatδOsispositivewhensispositive;thatis,sistakenaspositive
inananticlockwisesense,andAOsispositivewhen,asbefore,p(seeFig.17.3)ispositive.
Wehavenotedthatthelongitudinalstrainεziszeroinaclosedsectionbeamsubjectedtoapure
torque.Thismeansthatallsectionsofthebeammustpossessidenticalwarpingdistributions.Inother
words,longitudinalgeneratorsofthebeamsurfaceremainunchangedinlengthalthoughsubjectedto
axialdisplacement.
Example 17.1
Athin-walledcircularsectionbeamhasadiameterof200mmandis2mlong;itisfirmlyrestrained
against rotation at each end. A concentrated torque of 30kNm is applied to the beam at its midspan
point. If the maximum shear stress in the beam is limited to 200N/mm^2 and themaximumangleof
twistto2◦,calculatetheminimumthicknessofthebeamwalls.TakeG=25000N/mm^2.