Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

506 CHAPTER 17 Torsion of Beams


Itfollowsthatθ=Az+B,u=Cz+D,v=Ez+F,whereA,B,C,D,E,andFareunknownconstants.
Thus,θ,u,andvarealllinearfunctionsofz.
Equation(16.22),relatingtherateoftwisttothevariableshearflowqsdevelopedinashearloaded
closedsectionbeam,isalsovalidforthecaseqs=q=constant.Hence,



dz

=

q
2 A


ds
Gt

whichbecomes,onsubstitutingforqfromEq.(17.1)



dz

=

T

4 A^2


ds
Gt

(17.4)

Thewarpingdistributionproducedbyavaryingshearflow,asdefinedbyEq.(16.25)foraxeshaving
theiroriginatthecenteroftwist,isalsoapplicabletothecaseofaconstantshearflow.Thus,


ws−w 0 =q

∫s

0

ds
Gt


AOs
A

q


ds
Gt

ReplacingqfromEq.(17.1),wehave


ws−w 0 =


2 A

(

δOs
δ


AOs
A

)

(17.5)

where


δ=


ds
Gt

and δOs=

∫s

0

ds
Gt

ThesignofthewarpingdisplacementinEq.(17.5)isgovernedbythesignoftheappliedtorqueTand
thesignsoftheparametersδOsandAOs.Havingspecifiedinitiallythatapositivetorqueisanticlockwise,
thesignsofδOsandAOsarefixedinthatδOsispositivewhensispositive;thatis,sistakenaspositive
inananticlockwisesense,andAOsispositivewhen,asbefore,p(seeFig.17.3)ispositive.
Wehavenotedthatthelongitudinalstrainεziszeroinaclosedsectionbeamsubjectedtoapure
torque.Thismeansthatallsectionsofthebeammustpossessidenticalwarpingdistributions.Inother
words,longitudinalgeneratorsofthebeamsurfaceremainunchangedinlengthalthoughsubjectedto
axialdisplacement.


Example 17.1
Athin-walledcircularsectionbeamhasadiameterof200mmandis2mlong;itisfirmlyrestrained
against rotation at each end. A concentrated torque of 30kNm is applied to the beam at its midspan
point. If the maximum shear stress in the beam is limited to 200N/mm^2 and themaximumangleof
twistto2◦,calculatetheminimumthicknessofthebeamwalls.TakeG=25000N/mm^2.

Free download pdf