506 CHAPTER 17 Torsion of Beams
Itfollowsthatθ=Az+B,u=Cz+D,v=Ez+F,whereA,B,C,D,E,andFareunknownconstants.
Thus,θ,u,andvarealllinearfunctionsofz.
Equation(16.22),relatingtherateoftwisttothevariableshearflowqsdevelopedinashearloaded
closedsectionbeam,isalsovalidforthecaseqs=q=constant.Hence,
dθ
dz
=
q
2 A
∮
ds
Gt
whichbecomes,onsubstitutingforqfromEq.(17.1)
dθ
dz
=
T
4 A^2
∮
ds
Gt
(17.4)
Thewarpingdistributionproducedbyavaryingshearflow,asdefinedbyEq.(16.25)foraxeshaving
theiroriginatthecenteroftwist,isalsoapplicabletothecaseofaconstantshearflow.Thus,
ws−w 0 =q
∫s
0
ds
Gt
−
AOs
A
q
∮
ds
Gt
ReplacingqfromEq.(17.1),wehave
ws−w 0 =
Tδ
2 A
(
δOs
δ
−
AOs
A
)
(17.5)
where
δ=
∮
ds
Gt
and δOs=
∫s
0
ds
Gt
ThesignofthewarpingdisplacementinEq.(17.5)isgovernedbythesignoftheappliedtorqueTand
thesignsoftheparametersδOsandAOs.Havingspecifiedinitiallythatapositivetorqueisanticlockwise,
thesignsofδOsandAOsarefixedinthatδOsispositivewhensispositive;thatis,sistakenaspositive
inananticlockwisesense,andAOsispositivewhen,asbefore,p(seeFig.17.3)ispositive.
Wehavenotedthatthelongitudinalstrainεziszeroinaclosedsectionbeamsubjectedtoapure
torque.Thismeansthatallsectionsofthebeammustpossessidenticalwarpingdistributions.Inother
words,longitudinalgeneratorsofthebeamsurfaceremainunchangedinlengthalthoughsubjectedto
axialdisplacement.
Example 17.1
Athin-walledcircularsectionbeamhasadiameterof200mmandis2mlong;itisfirmlyrestrained
against rotation at each end. A concentrated torque of 30kNm is applied to the beam at its midspan
point. If the maximum shear stress in the beam is limited to 200N/mm^2 and themaximumangleof
twistto2◦,calculatetheminimumthicknessofthebeamwalls.TakeG=25000N/mm^2.