17.1 Torsion of Closed Section Beams 507
The minimum thickness of the beam corresponding to the maximum allowable shear stress of
200N/mm^2 isobtaineddirectlyusingEq.(17.1)inwhichTmax=15kNm.
Then
tmin=
15 × 106 × 4
2 ×π× 2002 × 200
=1.2mm
TherateoftwistalongthebeamisgivenbyEq.(17.4)inwhich
∮
ds
t
=
π× 200
tmin
Hence
dθ
dz
=
T
4 A^2 G
×
π× 200
tmin
(i)
TakingtheoriginforzatoneofthefixedendsandintegratingEq.(i)forhalfthelengthofthebeam,
weobtain
θ=
T
4 A^2 G
×
200 π
tmin
z+C 1 ,
whereC 1 isaconstantofintegration.Atthefixedendwherez=0,θ=0,soC 1 =0.
Hence
θ=
T
4 A^2 G
×
200 π
tmin
z
Themaximumangleoftwistoccursatthemidspanofthebeamwherez=1m.Hence
tmin=
15 × 106 × 200 ×π× 1 × 103 × 180
4 ×(π× 2002 / 4 )^2 × 25000 × 2 ×π
=2.7mm
Theminimumallowablethicknessthatsatisfiesbothconditionsistherefore2.7mm.
Example 17.2
Determinethewarpingdistributioninthedoublysymmetricalrectangular,closedsectionbeam,shown
inFig.17.4,whensubjectedtoananticlockwisetorqueT.
Fromsymmetry,thecenteroftwistRwillcoincidewiththemidpointofthecrosssection,andpoints
ofzerowarpingwilllieontheaxesofsymmetryatthemidpointsofthesides.Weshall,therefore,take
theoriginforsatthemidpointofside14andmeasuresinthepositive,anticlockwise,sensearoundthe
section.AssumingtheshearmodulusGtobeconstant,werewriteEq.(17.5)intheform
ws−w 0 =
Tδ
2 AG
(
δOs
δ
−
AOs
A
)
(i)