508 CHAPTER 17 Torsion of Beams
Fig.17.4
Torsion of a rectangular section beam for Example 17.2.
where
δ=
∮
ds
t
and δOs=
∫s
0
ds
t
InEq.(i),
w 0 =0, δ= 2
(
b
tb
+
a
ta
)
and A=ab
From0to1,0≤s 1 ≤b/2and
δOs=
∫s^1
0
ds 1
tb
=
s 1
tb
AOs=
as 1
4
(ii)
NotethatδOsandAOsarebothpositive.
SubstitutionforδOsandAOsfromEq.(ii)in(i)showsthatthewarpingdistributioninthewall01,
w 01 ,islinear.Also,
w 1 =
T
2 abG
2
(
b
tb
+
a
ta
)[
b/ 2 tb
2 (b/tb+a/ta)
−
ab/ 8
ab
]
whichgives
w 1 =
T
8 abG
(
b
tb
−
a
ta
)
(iii)
Theremainderofthewarpingdistributionmaybededucedfromsymmetryandthefactthatthewarping
mustbezeroatpointswheretheaxesofsymmetryandthewallsofthecrosssectionintersect.Itfollows
that
w 2 =−w 1 =−w 3 =w 4