Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

508 CHAPTER 17 Torsion of Beams


Fig.17.4


Torsion of a rectangular section beam for Example 17.2.


where


δ=


ds
t

and δOs=

∫s

0

ds
t

InEq.(i),


w 0 =0, δ= 2

(

b
tb

+

a
ta

)

and A=ab

From0to1,0≤s 1 ≤b/2and

δOs=

∫s^1

0

ds 1
tb

=

s 1
tb

AOs=

as 1
4

(ii)

NotethatδOsandAOsarebothpositive.
SubstitutionforδOsandAOsfromEq.(ii)in(i)showsthatthewarpingdistributioninthewall01,
w 01 ,islinear.Also,


w 1 =

T

2 abG

2

(

b
tb

+

a
ta

)[

b/ 2 tb
2 (b/tb+a/ta)


ab/ 8
ab

]

whichgives


w 1 =

T

8 abG

(

b
tb


a
ta

)

(iii)

Theremainderofthewarpingdistributionmaybededucedfromsymmetryandthefactthatthewarping
mustbezeroatpointswheretheaxesofsymmetryandthewallsofthecrosssectionintersect.Itfollows
that


w 2 =−w 1 =−w 3 =w 4
Free download pdf