2.6 Bending of an End-Loaded Cantilever 55Fig.2.5
Displacements produced by rigid body rotation.
2.6 BendingofanEnd-LoadedCantilever............................................................
In his semi-inverse solution of this problem, St. Venant based his choice of stress function on the
reasonableassumptionsthatthedirectstressisdirectlyproportionaltobendingmoment(andtherefore
distancefromthefreeend)andheightabovetheneutralaxis.Theportionofthestressfunctiongiving
shearstressfollowsfromtheequilibriumconditionrelatingσxandτxy.Theappropriatestressfunction
forthecantileverbeamshowninFig.2.6isthen
φ=Axy+
Bxy^3
6(i)whereAandBareunknownconstants.Hence
σx=∂^2 φ
∂y^2=Bxyσy=∂^2 φ
∂x^2= 0
τxy=−∂^2 φ
∂x∂y=−A−
By^2
2⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎭
(ii)Substitutionforφinthebiharmonicequationshowsthattheformofthestressfunctionsatisfiescom-
patibilityforallvaluesoftheconstantsAandB.TheactualvaluesofAandBarechosentosatisfythe
boundarycondition—thatis,τxy=0—alongtheupperandloweredgesofthebeam,andtheresultant
shearloadoverthefreeendisequaltoP.
Fromthefirstofthese
τxy=−A−By^2
2=0aty=±b
2