2.6 Bending of an End-Loaded Cantilever 55
Fig.2.5
Displacements produced by rigid body rotation.
2.6 BendingofanEnd-LoadedCantilever............................................................
In his semi-inverse solution of this problem, St. Venant based his choice of stress function on the
reasonableassumptionsthatthedirectstressisdirectlyproportionaltobendingmoment(andtherefore
distancefromthefreeend)andheightabovetheneutralaxis.Theportionofthestressfunctiongiving
shearstressfollowsfromtheequilibriumconditionrelatingσxandτxy.Theappropriatestressfunction
forthecantileverbeamshowninFig.2.6isthen
φ=Axy+
Bxy^3
6
(i)
whereAandBareunknownconstants.Hence
σx=
∂^2 φ
∂y^2
=Bxy
σy=
∂^2 φ
∂x^2
= 0
τxy=−
∂^2 φ
∂x∂y
=−A−
By^2
2
⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎭
(ii)
Substitutionforφinthebiharmonicequationshowsthattheformofthestressfunctionsatisfiescom-
patibilityforallvaluesoftheconstantsAandB.TheactualvaluesofAandBarechosentosatisfythe
boundarycondition—thatis,τxy=0—alongtheupperandloweredgesofthebeam,andtheresultant
shearloadoverthefreeendisequaltoP.
Fromthefirstofthese
τxy=−A−
By^2
2
=0aty=±
b
2