56 CHAPTER 2 Two-Dimensional Problems in Elasticity
Fig.2.6
Bending of an end-loaded cantilever.
giving
A=−
Bb^2
8Fromthesecond
−∫b/ 2−b/ 2τxydy=P (seesignconventionforτxy)or
−
∫b/ 2−b/ 2(
Bb^2
8−
By^2
2)
dy=Pfromwhich
B=−12 P
b^3ThestressesfollowfromEqs.(ii)
σx=−12 Pxy
b^3=−
Px
Iyσy= 0τxy=−12 P
8 b^3(b^2 − 4 y^2 )=−P
8 I
(b^2 − 4 y^2 )⎫
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎭
(iii)whereI=b^3 /12thesecondmomentofareaofthebeamcrosssection.
WenotefromthediscussionofSection2.4thatEqs.(iii)representsanexactsolutionsubjecttothe
followingconditionsthat:
(1) theshearforcePisdistributedoverthefreeendinthesamemannerastheshearstressτxygiven
byEqs.(iii)