56 CHAPTER 2 Two-Dimensional Problems in Elasticity
Fig.2.6
Bending of an end-loaded cantilever.
giving
A=−
Bb^2
8
Fromthesecond
−
∫b/ 2
−b/ 2
τxydy=P (seesignconventionforτxy)
or
−
∫b/ 2
−b/ 2
(
Bb^2
8
−
By^2
2
)
dy=P
fromwhich
B=−
12 P
b^3
ThestressesfollowfromEqs.(ii)
σx=−
12 Pxy
b^3
=−
Px
I
y
σy= 0
τxy=−
12 P
8 b^3
(b^2 − 4 y^2 )=−
P
8 I
(b^2 − 4 y^2 )
⎫
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎭
(iii)
whereI=b^3 /12thesecondmomentofareaofthebeamcrosssection.
WenotefromthediscussionofSection2.4thatEqs.(iii)representsanexactsolutionsubjecttothe
followingconditionsthat:
(1) theshearforcePisdistributedoverthefreeendinthesamemannerastheshearstressτxygiven
byEqs.(iii)