Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
2.6 Bending of an End-Loaded Cantilever 59

Thedeflectioncurvefortheneutralplaneis


(v)y= 0 =

Px^3
6 EI


Pl^2 x
2 EI

+

Pl^3
3 EI

(xiii)

from which the tip deflection (x=0)isPl^3 / 3 EI. This value is that predicted by simple beam theory
(Chapter 15) and does not include the contribution to deflection of the shear strain. This was elim-
inated when we assumed that the slope of the neutral plane at the built-in end was zero. A more
detailed examination of this effect is instructive. The shear strain at any point in the beam is given
byEq.(vi)


γxy=−

P

8 IG

(

b^2 − 4 y^2

)

andisobviouslyindependentofx.Therefore,atallpointsontheneutralplanetheshearstrainisconstant
andequalto


γxy=−

Pb^2
8 IG

,

whichamountstoarotationoftheneutralplaneasshowninFig.2.7.Thedeflectionoftheneutralplane
duetothisshearstrainatanysectionofthebeamisthereforeequalto


Pb^2
8 IG

(l−x)

andEq.(xiii)mayberewrittentoincludetheeffectofshearas


(v)y= 0 =

Px^3
6 EI


Pl^2 x
2 EI

+

Pl^3
3 EI

+

Pb^2
8 IG

(l−x) (xiv)

Letusnowexaminethedistortedshapeofthebeamsection,whichtheanalysisassumesisfreeto
takeplace.Atthebuilt-inendwhenx=lthedisplacementofanypointis,fromEq.(xi)


u=

νPy^3
6 EI

+

Py^3
6 IG


Pb^2 y
8 IG

(xv)

Fig.2.7


Rotation of neutral plane due to shear in end-loaded cantilever.

Free download pdf