Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

58 CHAPTER 2 Two-Dimensional Problems in Elasticity


and


∂f 2 (x)
∂x

=

Px^2
2 EI

+C

∂f 1 (y)
∂y

=

Py^2
2 IG


νPy^2
2 EI

+D

sothat


f 2 (x)=

Px^3
6 EI

+Cx+F

and


f 1 (y)=

Py^3
6 IG


νPy^3
6 EI

+Dy+H

Therefore,fromEqs.(vii)


u=−

Px^2 y
2 EI


νPy^3
6 EI

+

Py^3
6 IG

+Dy+H (ix)

v=

νPxy^2
2 EI

+

Px^3
6 EI

+Cx+F (x)

The constantsC,D,F,andHare now determined from Eq. (viii) and the displacement boundary
conditionsimposedbythesupportsystem.Assumingthatthesupportpreventsmovementofthepoint
Kinthebeamcrosssectionatthebuilt-inend,thenu=v=0atx=l,y=0,andfromEqs.(ix)and(x)


H= 0 F=−

Pl^3
6 EI

−Cl

Ifwenowassumethattheslopeoftheneutralplaneiszeroatthebuilt-inend,then∂v/∂x=0atx=l,
y=0,andfromEq.(x)


C=−

Pl^2
2 EI

Itfollowsimmediatelythat


F=

Pl^3
2 EI

and,fromEq.(viii)


D=

Pl^2
2 EI


Pb^2
8 IG
SubstitutionfortheconstantsC,D,F,andHinEqs.(ix)and(x)nowproducestheequationsforthe
componentsofdisplacementatanypointinthebeam.Thus,


u=−

Px^2 y
2 EI


νPy^3
6 EI

+

Py^3
6 IG

+

(

Pl^2
2 EI


Pb^2
8 IG

)

y (xi)

v=

νPxy^2
2 EI

+

Px^3
6 EI


Pl^2 x
2 EI

+

Pl^3
3 EI

(xii)
Free download pdf