58 CHAPTER 2 Two-Dimensional Problems in Elasticity
and
∂f 2 (x)
∂x=
Px^2
2 EI+C
∂f 1 (y)
∂y=
Py^2
2 IG−
νPy^2
2 EI+D
sothat
f 2 (x)=Px^3
6 EI+Cx+Fand
f 1 (y)=Py^3
6 IG−
νPy^3
6 EI+Dy+HTherefore,fromEqs.(vii)
u=−Px^2 y
2 EI−
νPy^3
6 EI+
Py^3
6 IG+Dy+H (ix)v=νPxy^2
2 EI+
Px^3
6 EI+Cx+F (x)The constantsC,D,F,andHare now determined from Eq. (viii) and the displacement boundary
conditionsimposedbythesupportsystem.Assumingthatthesupportpreventsmovementofthepoint
Kinthebeamcrosssectionatthebuilt-inend,thenu=v=0atx=l,y=0,andfromEqs.(ix)and(x)
H= 0 F=−
Pl^3
6 EI−ClIfwenowassumethattheslopeoftheneutralplaneiszeroatthebuilt-inend,then∂v/∂x=0atx=l,
y=0,andfromEq.(x)
C=−
Pl^2
2 EIItfollowsimmediatelythat
F=
Pl^3
2 EIand,fromEq.(viii)
D=
Pl^2
2 EI−
Pb^2
8 IG
SubstitutionfortheconstantsC,D,F,andHinEqs.(ix)and(x)nowproducestheequationsforthe
componentsofdisplacementatanypointinthebeam.Thus,
u=−Px^2 y
2 EI−
νPy^3
6 EI+
Py^3
6 IG+
(
Pl^2
2 EI−
Pb^2
8 IG)
y (xi)v=νPxy^2
2 EI+
Px^3
6 EI−
Pl^2 x
2 EI+
Pl^3
3 EI(xii)