58 CHAPTER 2 Two-Dimensional Problems in Elasticity
and
∂f 2 (x)
∂x
=
Px^2
2 EI
+C
∂f 1 (y)
∂y
=
Py^2
2 IG
−
νPy^2
2 EI
+D
sothat
f 2 (x)=
Px^3
6 EI
+Cx+F
and
f 1 (y)=
Py^3
6 IG
−
νPy^3
6 EI
+Dy+H
Therefore,fromEqs.(vii)
u=−
Px^2 y
2 EI
−
νPy^3
6 EI
+
Py^3
6 IG
+Dy+H (ix)
v=
νPxy^2
2 EI
+
Px^3
6 EI
+Cx+F (x)
The constantsC,D,F,andHare now determined from Eq. (viii) and the displacement boundary
conditionsimposedbythesupportsystem.Assumingthatthesupportpreventsmovementofthepoint
Kinthebeamcrosssectionatthebuilt-inend,thenu=v=0atx=l,y=0,andfromEqs.(ix)and(x)
H= 0 F=−
Pl^3
6 EI
−Cl
Ifwenowassumethattheslopeoftheneutralplaneiszeroatthebuilt-inend,then∂v/∂x=0atx=l,
y=0,andfromEq.(x)
C=−
Pl^2
2 EI
Itfollowsimmediatelythat
F=
Pl^3
2 EI
and,fromEq.(viii)
D=
Pl^2
2 EI
−
Pb^2
8 IG
SubstitutionfortheconstantsC,D,F,andHinEqs.(ix)and(x)nowproducestheequationsforthe
componentsofdisplacementatanypointinthebeam.Thus,
u=−
Px^2 y
2 EI
−
νPy^3
6 EI
+
Py^3
6 IG
+
(
Pl^2
2 EI
−
Pb^2
8 IG
)
y (xi)
v=
νPxy^2
2 EI
+
Px^3
6 EI
−
Pl^2 x
2 EI
+
Pl^3
3 EI
(xii)