62 CHAPTER 2 Two-Dimensional Problems in Elasticity
Fig. P.2.4
AsasolutiontothestressanalysisproblemanAirystressfunctionφisproposed,where
φ=
p
120 d^3
[5(x^3 −l^2 x)(y+d)^2 (y− 2 d)− 3 yx(y^2 −d^2 )^2 ]
Show thatφsatisfies the internal compatibility conditions and obtain the distribution of stresses within the
plate.Determinealsotheextenttowhichthestaticboundaryconditionsaresatisfied.
Ans. σx= px
20 d^3
[5y(x^2 −l^2 )− 10 y^3 + 6 d^2 y]
σy=
px
4 d^3
(y^3 − 3 yd^2 − 2 d^3 )
τxy=
−p
40 d^3
[5( 3 x^2 −l^2 )(y^2 −d^2 )− 5 y^4 + 6 y^2 d^2 −d^4 ].
The boundary stress function values ofτxydo not agree with the assumed constant equilibrating shears atx= 0
andl.
P.2.5 The cantilever beam shown in Fig. P.2.5 is rigidly fixed atx=Land carries loading such that the Airy
stressfunctionrelatingtotheproblemis
φ=
w
40 bc^3
(
− 10 c^3 x^2 − 15 c^2 x^2 y+ 2 c^2 y^3 + 5 x^2 y^3 −y^5
)
Findtheloadingpatterncorrespondingtothefunctionandcheckitsvaliditywithrespecttotheboundaryconditions.
Fig. P.2.5