Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
3.1Prandtl Stress Function Solution 67

where∇^2 isthetwo-dimensionalLaplacianoperator


(
∂^2
∂x^2

+

∂^2

∂y^2

)

Therefore,theparameter∇^2 φisconstantatanysectionofthebarsothatthefunctionφmustsatisfy
theequation


∂^2 φ
∂x^2

+

∂^2 φ
∂y^2

=constant=F(say) (3.4)

atallpointswithinthebar.
Finally, we must ensure thatφfulfills the boundary conditions specified by Eqs. (1.7). On the
cylindricalsurfaceofthebar,therearenoexternallyappliedforcessothatX=Y=Z=0.Thedirection
cosinenisalsozero,andthereforethefirsttwoequationsofEqs.(1.7)areidenticallysatisfied,leaving
thethirdequationastheboundarycondition;thatis,


τyzm+τxzl= 0 (3.5)

ThedirectioncosineslandmofthenormalNtoanypointonthesurfaceofthebarare,byreference
toFig.3.2,


l=

dy
ds

m=−

dx
ds

(3.6)

SubstitutingEqs.(3.2)and(3.6)intoEq.(3.5),wehave

∂φ
∂x

dx
ds

+

∂φ
∂y

dy
ds

= 0

or


∂φ
ds

= 0

Fig.3.2


Formation of the direction cosineslandmof the normal to the surface of the bar.

Free download pdf