3.1Prandtl Stress Function Solution 67
where∇^2 isthetwo-dimensionalLaplacianoperator
(
∂^2
∂x^2
+
∂^2
∂y^2
)
Therefore,theparameter∇^2 φisconstantatanysectionofthebarsothatthefunctionφmustsatisfy
theequation
∂^2 φ
∂x^2
+
∂^2 φ
∂y^2
=constant=F(say) (3.4)
atallpointswithinthebar.
Finally, we must ensure thatφfulfills the boundary conditions specified by Eqs. (1.7). On the
cylindricalsurfaceofthebar,therearenoexternallyappliedforcessothatX=Y=Z=0.Thedirection
cosinenisalsozero,andthereforethefirsttwoequationsofEqs.(1.7)areidenticallysatisfied,leaving
thethirdequationastheboundarycondition;thatis,
τyzm+τxzl= 0 (3.5)
ThedirectioncosineslandmofthenormalNtoanypointonthesurfaceofthebarare,byreference
toFig.3.2,
l=
dy
ds
m=−
dx
ds
(3.6)
SubstitutingEqs.(3.2)and(3.6)intoEq.(3.5),wehave
∂φ
∂x
dx
ds
+
∂φ
∂y
dy
ds
= 0
or
∂φ
ds
= 0
Fig.3.2
Formation of the direction cosineslandmof the normal to the surface of the bar.