68 CHAPTER 3 Torsion of Solid Sections
Thus,φisconstantonthesurfaceofthebar,andsincetheactualvalueofthisconstantdoesnotaffect
thestressesofEq.(3.2),wemayconvenientlytaketheconstanttobezero.Hence,onthecylindrical
surfaceofthebar,wehavetheboundarycondition
φ= 0 (3.7)Ontheendsofthebar,thedirectioncosinesofthenormaltothesurfacehavethevaluesl=0,m=0,
andn=1.Therelatedboundaryconditions,fromEqs.(1.7),arethen
X=τzxY=τzy
Z= 0Wenowobservethattheforcesoneachendofthebarareshearforceswhicharedistributedoverthe
ends of the bar in the same manner as the shear stresses are distributed over the cross section. The
resultantshearforceinthepositivedirectionofthexaxis,whichweshallcallSx,isthen
Sx=∫∫
Xdxdy=∫∫
τzxdxdyor,usingtherelationshipofEqs.(3.2),
Sx=∫∫
∂φ
∂ydxdy=∫
dx∫
∂φ
∂ydy= 0asφ=0attheboundary.Inasimilarmanner,Sy,theresultantshearforceintheydirection,is
Sy=−∫
dy∫
∂φ
∂xdx= 0Itfollowsthatthereisnoresultantshearforceontheendsofthebarandtheforcesrepresentatorque
ofmagnitude,referringtoFig.3.3
T=
∫∫
(τzyx−τzxy)dxdyinwhichwetakethesignofTasbeingpositiveintheanticlockwisesense.
Rewritingthisequationintermsofthestressfunctionφ
T=−
∫∫
∂φ
∂xxdxdy−∫∫
∂φ
∂yydxdyIntegratingeachtermontheright-handsideofthisequationbyparts,andnotingagainthatφ=0atall
pointsontheboundary,wehave
T= 2
∫∫
φdxdy (3.8)