70 CHAPTER 3 Torsion of Solid Sections
Fig.3.4
Rigid body displacement in the cross section of the bar.
or
u=−θyv=θx (3.9)
ReferringtoEqs.(1.20)and(1.46)
γzx=
∂u
∂z
+
∂w
∂x
=
τzx
G
γzy=
∂w
∂y
+
∂v
∂z
=
τzy
G
RearrangingandsubstitutingforuandvfromEqs.(3.9)
∂w
∂x
=
τzx
G
+
dθ
dz
y
∂w
∂y
=
τzy
G
−
dθ
dz
x (3.10)
For a particular torsion problem Eqs. (3.10) enable the warping displacementwof the originally
planecrosssectiontobedetermined.Notethatsinceeachcrosssectionrotatesasarigidbody,θisa
functionofzonly.
DifferentiatingthefirstofEqs.(3.10)withrespecttoy,thesecondwithrespecttox,andsubtracting,
wehave
0 =
1
G
(
∂τzx
∂y
−
∂τzy
∂x
)
+ 2
dθ
dz
Expressingτzxandτzyintermsofφgives
∂^2 φ
∂x^2
+
∂^2 φ
∂y^2
=− 2 G
dθ
dz
or,fromEq.(3.4)
− 2 G
dθ
dz
=∇^2 φ=F(constant) (3.11)