Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

70 CHAPTER 3 Torsion of Solid Sections


Fig.3.4


Rigid body displacement in the cross section of the bar.


or


u=−θyv=θx (3.9)

ReferringtoEqs.(1.20)and(1.46)


γzx=

∂u
∂z

+

∂w
∂x

=

τzx
G

γzy=

∂w
∂y

+

∂v
∂z

=

τzy
G

RearrangingandsubstitutingforuandvfromEqs.(3.9)


∂w
∂x

=

τzx
G

+


dz

y

∂w
∂y

=

τzy
G



dz

x (3.10)

For a particular torsion problem Eqs. (3.10) enable the warping displacementwof the originally
planecrosssectiontobedetermined.Notethatsinceeachcrosssectionrotatesasarigidbody,θisa
functionofzonly.
DifferentiatingthefirstofEqs.(3.10)withrespecttoy,thesecondwithrespecttox,andsubtracting,
wehave


0 =

1

G

(

∂τzx
∂y


∂τzy
∂x

)

+ 2


dz

Expressingτzxandτzyintermsofφgives


∂^2 φ
∂x^2

+

∂^2 φ
∂y^2

=− 2 G


dz

or,fromEq.(3.4)


− 2 G


dz

=∇^2 φ=F(constant) (3.11)
Free download pdf