Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

72 CHAPTER 3 Torsion of Solid Sections


whichmaybewritten,fromFig.3.5,as


τzx=−

∂φ
∂x

dx
dn


∂φ
∂y

dy
dn

=−

∂φ
∂n

(3.16)

where, in this case, the direction cosineslandmare defined in terms of an elemental normal of
lengthδn.
Therefore,wehaveshownthattheresultantshearstressatanypointistangentialtothelineofshear
stressthroughthepointandhasavalueequaltominusthederivativeofφinadirectionnormaltotheline.


Example 3.1
Determine the rate of twist and the stress distribution in a circular section bar of radiusRwhich is
subjectedtoequalandoppositetorquesTateachofitsfreeends.


Ifweassumeanoriginofaxesatthecenterofthebar,theequationofitssurfaceisgivenby

x^2 +y^2 =R^2

Ifwenowchooseastressfunctionoftheform


φ=C(x^2 +y^2 −R^2 ) (i)

theboundaryconditionφ=0issatisfiedateverypointontheboundaryofthebarandtheconstantC
maybechosentofulfilltheremainingrequirementofcompatibility.Therefore,fromEqs.(3.11)and(i)


4 C=− 2 G


dz

sothat


C=−

G

2


dz

and


φ=−G


dz

(x^2 +y^2 −R^2 )|2(ii)

SubstitutingforφinEq.(3.8)


T=−G


dz

(∫∫

x^2 dxdy+

∫∫

y^2 dxdy−R^2

∫∫

dxdy

)

ThefirstandsecondintegralsinthisequationbothhavethevalueπR^4 /4, whereasthethirdintegralis
equaltoπR^2 ,theareaofcrosssectionofthebar.Then,


T=−G


dz

(

πR^4
4

+

πR^4
4

−πR^4

)
Free download pdf