Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

74 CHAPTER 3 Torsion of Solid Sections


Fig.3.6


Torsion of a bar of elliptical cross section.


Thesemimajorandsemiminoraxesareaandb,respectively,sothattheequationofitsboundaryis

x^2
a^2

+

y^2
b^2

= 1

Ifwechooseastressfunctionoftheform


φ=C

(

x^2
a^2

+

y^2
b^2

− 1

)

,(i)

thentheboundaryconditionφ=0issatisfiedateverypointontheboundaryandtheconstantCmay
bechosentofulfilltheremainingrequirementofcompatibility.Thus,fromEqs.(3.11)and(i)


2 C

(

1

a^2

+

1

b^2

)

=− 2 G


dz

or


C=−G


dz

a^2 b^2
(a^2 +b^2 )

(ii)

giving


φ=−G


dz

a^2 b^2
(a^2 +b^2 )

(

x^2
a^2

+

y^2
b^2

− 1

)

(iii)

SubstitutingthisexpressionforφinEq.(3.8)establishestherelationshipbetweenthetorqueTandthe
rateoftwist


T=− 2 G


dz

a^2 b^2
(a^2 +b^2 )

(

1

a^2

∫∫

x^2 dxdy+

1

b^2

∫∫

y^2 dxdy−

∫∫

dxdy

)

The first and second integrals in this equation are the second moments of areaIyy=πa^3 b/4and
Ixx=πab^3 /4,whereasthethirdintegralistheareaofthecrosssectionA=πab.Replacingtheintegrals

Free download pdf