Optimizing Optimization: The Next Generation of Optimization Applications and Theory (Quantitative Finance)

(Romina) #1

Some properties of averaging simulated optimization methods 231


where the two χ 2 variables in Equation (10.7) are independent. This result also
appears in Stein (2002). Thus, pdf()hˆ can be easily found using results related
to noncentral F distributions. In this regard, we have from Johnson and Kotz
(1972, p. 191) that the pdf ((1/ h )  g ) is, noting B( ) and 1 F 1 ( ) to be Beta and
confluent hypergeometric functions respectively,


pdf g
eg
Bg

F

Th NNT
N

N
() N
,( )

 ,,


   





/2 1
1
22

11

21
21
1

1
2

1
ν 22
ν

ν
() hh

g
()1g



⎜⎜
⎜⎜



⎟⎟
⎟⎟

Using this result and simple transformations, one can readily derive the pdf
density functions for the quantities of interest, viz, αλˆ(1/ hˆ). Tracking
error TE ()1/λ hˆ and the Information Ratio IR ()1/ hˆ Thus, we have:.


pdf TE y
ye y
By

Th
N

N
() N
()
,( )




 





2
1

22221
1
22

22 1

21
21

λλ
ν λ
ν

/

()

FF

NNT
h

y
y

1

22
22

1
2

1

(^221)
 

νλ
λ
,,
()


⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟⎟


⎜⎜
⎜⎜⎜


⎟⎟
⎟⎟

, y 0
From these pdfs or via that of hˆ or g, we can easily find moments. That is,
since
ˆ
() [( )][ )]
(,)()
(,) ()
hg
Eg E E
NTh
k
NTh
kk






1
1
22
1
22
χ χ
χχ
ν
ν
/
/
/
and since
E
eN
kF
N
NTh
k
Thk
[(χ(,) ) ] N

 



(^21) 
2
1
2
11
21
2
1
2
/
/
Γ
Γ
()


⎜⎜



⎟⎟
⎟ kk
N T
,;h
 1
2 2


⎜⎜



⎟⎟

pdf
e
B
F
N
Th
N
N
() N
()
,( )
αω
λλω
λω
ν
ν ν
ˆ


 



/2 1
1
22
11
21
21
1
1
2
()
,,,
()
,
NT
h


1
221
0
λω
λω
ω


⎜⎜



⎟⎟
⎟⎟
pdf
e
B
F
N
Th
N
N
() N
()
,( )
αω
λλω
λω
ν
ν ν
ˆ


 



/2 1
1
22
11
21
21
1
1
2
()
,,,
()
,
NT
h


1
221
0
λω
λω
ω


⎜⎜



⎟⎟
⎟⎟
pdf IR x
xe x
Bx
F
N
Th
N
N
() N
()
,( )



 



2
1
1
221
1
22
2 11
21
21
/
()ν ν
νν
2
1
(^221)
0
2
,,() 2 ,
NT
h
x
x
x




⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟


⎜⎜
⎜⎜



⎟⎟
⎟⎟

pdf IR x
xe x
Bx
F
N
Th
N
N
() N
()
,( )



 



2
1
1
221
1
22
2 11
21
21
/
()ν ν
νν
2
1
(^221)
0
2
,,() 2 ,
NT
h
x
x
x




⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟


⎜⎜
⎜⎜



⎟⎟
⎟⎟

Free download pdf