232 Optimizing Optimization
and
E
k
(( ) )k k k
()
χ() ,
ν
ν ν
ν
2 2
22
2
Γ
Γ
()
/
Eg
ekk
F
N
k
N
k T
ThN
[] N () ,;
/
/
/
(^21)
22
1
2
11
2
1
2
1
2
ΓΓ
ΓΓ
()()
()
ν
ν
22 h
⎛
⎝
⎜⎜
⎜
⎞
⎠
⎟⎟
⎟
Therefore,
EEg
ekk
F
kkk
Th N
k N
[( ) ]αλ( )
λν
ν
/
/
(^21)
22
1
2
11
2
ΓΓ
ΓΓ
()()
()()
NN
k
N
Th
1
2
1
2
,;/ 2
⎛
⎝
⎜⎜
⎜
⎞
⎠
⎟⎟
⎟
(10.8)
ETE Eg
e
kkk
ThN kk
k N
(( ) ( )
()
λ
λν
ν
/
/
/
2
(^21)
2222
1
2 2
ΓΓ
ΓΓ
()()
()
111
1
22
1
2
F 2
NkN
Th
,;/
⎛
⎝
⎜⎜
⎜
⎞
⎠
⎟⎟
⎟
(10.9)
EIR Eg
(( ) )kk ( /2)
(10.10)
In particular, if we consider the means of the three quantities, we have:
Ea e F
N
N
N
()ˆ Th
ΓΓ
ΓΓ
1
2
1
22
2
11
1
2
1
1
2
1
()
⎛
⎝
⎜⎜
⎜
⎞
⎠
⎟⎟
⎟
()()
ν
λ ν
/ ,,;
()
()
,;
N
Th
N
F
N
Th
1
2
2
1
2
1
1
2
11 2
/
/
⎛
⎝
⎜⎜
⎜
⎞
⎠
⎟⎟
⎟
⎛
⎝
⎜⎜
⎜
⎞
⎠
⎟⎟
λν ⎟⎟
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
NT
hN
NT
h
TN
1
2
1
1
1
22
1
λν
λν λ ν
ν
() ( )
() ()
;
Since the true α 1/ λ h , we can readily develop an unbiased estimator of α via
a simple transformation:
E
T
a
N
T
()ν
λ
α
21
ˆ
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥