278 Optimizing Optimization
where U 0 is the value of expected utility under the true density, Uˆ is our esti-
mate of expected utility, and U is the familiar power utility function. We see
that for large numbers of observations, the bias in our estimates of expected
utility translates into a certainty equivalent return differential of around six
basis points for the Pearson and Skew-T distributions and around two basis
points for the NIG and S U distributions (see Table 11.5 ). Thus, within a port-
folio optimization framework where the primary goal is to estimate expected
utility, the quantile estimator appears robust to potential misspecification.
References
A ï t-Sahalia , Y. , & Brandt , M. ( 2001 ). Variable selection for portfolio choice. Journal of
Finance , 56 , 1297 – 1351.
Alth ö fer , I. , & Koschnick , K. U. ( 1991 ). On the convergence of “ threshold accepting. ”
Applied Mathematics and Optimization , 24 , 183 – 195.
Ang , A. , & Bekaert , G. ( 2002 ). International asset allocation with regime shifts. Review
of Financial Studies , 15 , 1137 – 1387.
Artzner , P. , Delbaen , F. , Eber , J. M. , & Heath , D. ( 1999 ). Coherent measures of risk.
Mathematical Finance , 9 , 203 – 228.
Bansal , R. , Hsieh , D. , & Viswanathan , S. ( 1993 ). A new approach to international arbi-
trage pricing. Journal of Finance , 48 , 1719 – 1747.
Barndorff-Nielsen , O. E. ( 1997 ). Normal inverse Gaussian distributions and stochastic
volatility modelling. Scandinavian Journal of Statistics , 24 , 1 – 13.
Benartzi , S. , & Thaler , R. ( 1995 ). Myopic loss aversion and the equity premium puzzle.
Quarterly Journal of Economics , 110 , 73 – 92.
Ber é nyi, Z. (2001). Accounting for illiquidity and non-normality of returns in the per-
formance assessment. Working Paper, University of Munich.
Berkelaar , A. B. , Kouwenberg , R. , & Post , T. ( 2004 ). Optimal portfolio choice under
loss aversion. Review of Economics and Statistics , 86 ( 4 ) , 973 – 987.
Boudoukh , J. , Richardson , M. , & Whitelaw , R. ( 1998 ). The best of both worlds:
A hybrid approach to calculating value at risk. Risk , 11 ( 5 ) , 64 – 67.
Boudoukh , J. , Richardson , M. , & Whitelaw , R. ( 2008 ). The myth of long-horizon pre-
dictability. The Review of Financial Studies , 24 ( 4 ) , 1577 – 1605.
Brandt , M. W. ( 2009 ). Portfolio choice problems. In Y. A. Sahalia & L. P. Hansen (Eds.) ,
Handbook of Financial Econometrics (pp. 429 – 448 ). Amsterdam : North-Holland.
Table 11.5 Certainty equivalent return differential, CED
No. Obs NIG Pearson Skew-T S (^) U
100 0.2175 0.0554 0.2577 0.0198
250 0.0436 0.0746 0.1411 0.0103
500 0.0220 0.0649 0.0613 0.0196
This table describes the percentage certainty equivalent return differential for our
expected utility calculations using Equation (11.21).