Optimizing Optimization: The Next Generation of Optimization Applications and Theory (Quantitative Finance)

(Romina) #1

Heuristic portfolio optimization: Bayesian updating with the Johnson family of distributions 279


Brandt , M. W. , Goyal , A. , Santa-Clara , P. , & Stroud , J. R. ( 2005 ). A simulation
approach to dynamic portfolio choice with an application to learning about return
predictability. Review of Financial Studies , 18 , 831 – 873.
Brockett , P. L. , & Garven , J. R. ( 1998 ). A reexamination of the relationship between
preferences and moment orderings by rational risk averse investors. Geneva Papers
on Risk and Insurance Theory , 23 , 37 – 127.
Campbell , J. Y. , & Thompson , S. B. ( 2008 ). Predicting excess stock returns out of sam-
ple: Can anything beat the historical average? The Review of Financial Studies ,
24 ( 4 ) , 31 – 1509.
Chamberlain , G. ( 1983 ). A characterization of the distributions that imply mean –
variance utility functions. Journal of Economic Theory , 29 , 185 – 201.
Chang , T. J. , Meade , N. , Beasley , J. E. , & Sharaiha , Y. M. ( 2000 ). Heuristics for car-
dinality constrained portfolio optimisation. Computers and Operations Research ,
27 , 1271 – 1302.
Chopra , V. , & Ziemba , W. ( 1993 ). The effect of errors in means, variances, and covari-
ances on optimal portfolio choice. Journal of Portfolio Management , 19 ( 2 ) , 6 – 12.
de Athayde , G. M. , & Flores , R. G. ( 2004 ). Finding a maximum skewness portfolio: A
general solution to three-moments portfolio choice. Journal of Economic Dynamics
and Control , 28 , 1335 – 1352.
Dueck , G. , & Scheuer , T. ( 1990 ). Threshold accepting: A general purpose algorithm
appearing superior to simulated annealing. Journal of Computational Physics , 90 ,
161 – 175.
Dueck , G. , & Winker , P. ( 1992 ). New concepts and algorithms for portfolio choice.
Applied Stochastic Models and Data Analysis , 8 , 159 – 178.
Duxbury, C. (2008). An investigation into the impact of skewness and kurtosis on asset
allocation for investors with power utility behaviour. Masters Thesis, University of
London.
Eriksson, A., Ghysels, E., & Wang, F. (2009). The normal inverse Gaussian distribution
and the pricing of derivatives. The Journal of Derivatives , 16(3), 23 – 37.
Fama , E. ( 1965 ). The behavior of stock market prices. Journal of Business , 38 , 34 – 105.
Fan , J. , & Yao , Q. ( 2000 ). Nonlinear time series. Nonparametric and parametric meth-
ods. New York : Springer Series in Statistics.
Fang , H. B. , Fang , K. T. , & Kotz , S. ( 2002 ). The meta-elliptical distributions with given
marginals. Journal of Multivariate Analysis , 82 , 1 – 16.
Gilli, M., & K ë llezi, E. (2002). Financial engineering, e-commerce, and supply chain.
Kluwer Applied Optimization Series.
Gilli, M., & Winker, P. (2004). A review of heuristic optimization methods in econo-
metrics. Research Paper, Swiss Finance Institute.
Gilli , M. , K ë llezi , E. , & Hysi , H. ( 2006 ). A data-driven optimization heuristic for down-
side risk minimization. The Journal of Risk , 8 ( 3 ) , 1 – 18.
Glover, F., Mulvey, J. M., & Hoyland, K. (1996). Meta-heuristics: Theory and applica-
tions. Kluwer Applied Optimization Series.
Gomes , F. J. ( 2005 ). Portfolio choice and trading volume with loss averse investors.
Journal of Business , 78 , 675 – 706.
Goyal , A. , & Welch , I. ( 2008 ). A comprehensive look at the empirical performance of
equity premium prediction. The Review of Financial Studies , 24 ( 4 ) , 1455 – 1508.
Granger , C. W. J. ( 2009 ). The Methodology and Practice of Econometrics: A Festschrift
in honour of David F Hendry. In J. Castle & N. Shephard (Eds.) , In Praise of
Pragmatics in Econometrics (pp. 429 – 448 ). Oxford University Press.

Free download pdf