- (log )
(log )
x
x− dx
+⎧
⎨⎪
⎩⎪⎫
⎬⎪
⎭⎪∫
1
1 22
is equal to(a) xe
x
cx
1 +^2+ (b)x
xc
(log )^2 + 1+(c)
log
(log )x
x
2 c
+ 1+ (d) x
x
2 c
+ 1+- Let fx xdx
xx
()
()( )=
+++∫
211122and f(0) = 0, thenthe value of f(1) be
(a) log( 12 + ) (b) log( 12 )
4
+ −π(c) log( 12 )
4
++π^ (d) none of these23.∫cos−−^37 //xxdx⋅sin^117 =
(a) log | sin^47 / xc|+ (b)^4
7
tan^47 / xc+(c) −^7 − +
4
tan^47 / xc (d) log|cos3/7x| + c- cos sin
/
θθθπ
3
02
∫ d =(a)^20
21
(b)^8
21(c) −^20
21(d) −^8
21- logx
x
dx
ab
∫ =(a) log log
log
b
a⎛
⎝⎜⎞
⎠⎟(b) log(ab) log b
a⎛
⎝⎜⎞
⎠⎟(c)^1
2
log(ab) log b
a⎛
⎝⎜⎞
⎠⎟(d)^1
2log(ab) log a
b⎛
⎝⎜⎞
⎠⎟- ∫tan−^1 =
0
1
xdx(a) π
4
1
2− log 2 (b) π−1
2log 2(c) π
4
−log 2 (d) π−log 2- dx
0 2 x
2
+
∫ =
cosπ/(a)^1
3
1
3tan−^1 ⎛
⎝⎜⎞
⎠⎟(b) 33 tan (−^1 )(c)^2 ⎛
⎝⎜⎞
⎠⎟−
31
3tan^1 (d) 23 tan (−^13 )- xdx
ax
a 4
224
0 ()+∫ =
(a)^1
16 41
a^33⎛π−
⎝⎜⎞
⎠⎟(b)^1
16 41
a^33⎛π+
⎝⎜⎞
⎠⎟(c)^1
16 41
3a^3 ⎛π−
⎝⎜⎞
⎠⎟ (d)1
16 41
3a^3 ⎛π+
⎝⎜⎞
⎠⎟- sin cos
sin
/ xx
x+ dx
+
∫ =
0 916 2π 4(a)^1
20log 3 (b) log3(c)^1
20log 5 (d) none of these- sin cos
cos cos
/ xxdx0 2 xx2++ 32
∫ =π(a) log^8
9⎛
⎝⎜⎞
⎠⎟ (b) log9
8⎛
⎝⎜⎞
⎠⎟
(c) log(8 × 9) (d) none of these- The value of the integral
sinmxsinnxdxfor m n m n≠∈( , I),is
−∫
ππ(a) 0 (b) π (c) π
2(d) 2π- dx
012 − axa+^2
∫ =
cosπ(a) π
21 ()−a^2(b) π(1 – a^2 )(c) π
1 −a^2(d) none of these- The value of dx
∫ 1 +excos
must be same as
(a)^1
11
2 121
−−
+⎛
⎝⎜⎞
⎠⎟− +
ee
etan tanx c(e lies between 0 and 1)(b)^2
11
2 121
−−
+⎛
⎝⎜⎞
⎠⎟− +
ee
etan tanx c,(e lies between 0 and 1)