- [sin ]
/
/
∫ xdx=
π
π
2
32
(where[.] is greatest integer
function)
(a) –π (b) π/2 (c) –π/2 (d) π
Matrix-Match Type
- Match the following :
Column I Column II
A. The value of
dx
1 nx
2
+
−
∫ cot
/
α
πα
where, 0
2
<<α π,n> 0 is
P. π
2
B. The value of
sin^2 ,
1
xxdx 0
+
>
−
∫ α α
π
π
is
Q. π
α
4
−
C. The value of
sin
sin cos
2
22
3
2 n
nn
x
xx
dx
+
−
∫
α
πα
is
R. 3
4
π− 2 α
D. The value of
tan
tan cot
tan
cot x
xx
dx
− +
−
∫
1
1
α
α
is
S. π
α
4
−tan−^1
- Match the following :
Column I Column II
A. sec
(sec tan )
x
xx
dx
+
∫ 2 =
P.
logsin
sin
x
x
− C
−
(^2) +
1
B. cos
(sin )(sin )
x
xx
dx
−−
∫ =
12
Q.
−
- cos +
(sin)
2
21 2
x
x
C
C.
sin ,
||
−
⎛
⎝⎜
⎞
⎠⎟
<=
∫
1
2
2
1
1
x
x
dx
x
R. 2xtan–1 x – log (1 + x^2 )
- C
D. (tanxxdx+=cot )
∫
S.
2 1
2
tan^1 tan
tan
−⎛ −
⎝⎜
⎞
⎠⎟+
x
x
C
Integer Answer Type
- If the value of definite integral xa axdx
a
∫ ⋅ −[log ]
1
where a > 1, and [.]denotes the greatest integer, ise−^1
2
then the value of 5[a] is ___
- IfIx=+∫ (sin (sin ) cos (cos ))^22 x xdx,
0
π
then
[I] = ____, where [.] denotes the greatest integer
function
- Area bounded by 2 ≥ max. {|x – y|, |x + y|} is
k sq. units then k = - The area bounded by the curves y = ln x, y = ln|x|,
y = |lnx|, y = |ln|x||(in sq. units) is - Let f(x) = x^3 + 3x + 2 and g(x) is the inverse of it.
The area bounded by g(x), the x-axis and the ordinates
at x = –2 and x = 6 is m
n
where m, n ∈ N and G.C.D of
(m, n) = 1 then m – 2 =
- The integral (| cos | sin | sin | cos )
/
/
∫ tt t tdt+
π
π
4
54
has
the value equal to
- If the area bounded by the curves y = –x^2 + 6x – 5,
y = –x^2 + 4x – 3 and the line y = 3x – 15 is^73
λ
sq. units,
then the value of λ is
- The minimum area bounded by the function
y = f(x) and y = αx + 9, (α ∈ R) where f satisfies the
relation f(x + y) = f(x) + f(y) +yfx xyR() ,∀∈and
f′(0) = 0 is 9A, then value of A is - Let R = {x, y : x^2 + y^2 ≤ 144 and sin(x + y) ≥ 0} and
S be the area of region given by R, then find S/9π. - If the area bounded by [x] + [y] = n and y = k;
n, k ∈ N and k ≤ (n + 1) and [.] greatest integer function,
in the first quadrant, is n + r, then find r.
SOLUTIONS - (b) : sin
sin( )
sin( )
sin( )
x
x
dx x
x
dx
−
= − +
∫∫α −
αα
α
= − + −
∫ −
(sin( ) cos cos( )sin
sin( )
xx
x
αα ααdx
α
=+∫cosαααdx ∫sin ⋅−cot(x )dx
= xcosα + sinα · logsin(x – α) + c