- [sin ]
/
/
∫ xdx=
ππ232
(where[.] is greatest integerfunction)
(a) –π (b) π/2 (c) –π/2 (d) π
Matrix-Match Type- Match the following :
Column I Column II
A. The value of
dx
1 nx2+−
∫ cot/απαwhere, 0
2<<α π,n> 0 isP. π
2B. The value of
sin^2 ,
1xxdx 0
+>
−∫ α α
ππ
isQ. π
α
4−C. The value ofsin
sin cos2
223
2 n
nnx
xxdx
+−
∫
απαisR. 3
4π− 2 αD. The value of
tan
tan cot
tancot x
xxdx
− +−
∫
11αα
isS. π
α
4−tan−^1- Match the following :
Column I Column II
A. sec
(sec tan )x
xxdx
+
∫ 2 =P.
logsin
sinx
x− C
−(^2) +
1
B. cos
(sin )(sin )
x
xx
dx
−−
∫ =
12
Q.
−
- cos +
(sin)
2
21 2
x
x
C
C.
sin ,
||
−
⎛
⎝⎜
⎞
⎠⎟
<=
∫
1
2
2
1
1
x
x
dx
x
R. 2xtan–1 x – log (1 + x^2 )
- C
D. (tanxxdx+=cot )
∫
S.
2 1
2
tan^1 tan
tan
−⎛ −
⎝⎜
⎞
⎠⎟+
x
x
C
Integer Answer Type
- If the value of definite integral xa axdx
a
∫ ⋅ −[log ]
1
where a > 1, and [.]denotes the greatest integer, ise−^1
2
then the value of 5[a] is ___- IfIx=+∫ (sin (sin ) cos (cos ))^22 x xdx,
0
π
then
[I] = ____, where [.] denotes the greatest integer
function- Area bounded by 2 ≥ max. {|x – y|, |x + y|} is
k sq. units then k = - The area bounded by the curves y = ln x, y = ln|x|,
y = |lnx|, y = |ln|x||(in sq. units) is - Let f(x) = x^3 + 3x + 2 and g(x) is the inverse of it.
The area bounded by g(x), the x-axis and the ordinates
at x = –2 and x = 6 is m
n
where m, n ∈ N and G.C.D of
(m, n) = 1 then m – 2 =- The integral (| cos | sin | sin | cos )
/
/
∫ tt t tdt+
ππ454
has
the value equal to- If the area bounded by the curves y = –x^2 + 6x – 5,
y = –x^2 + 4x – 3 and the line y = 3x – 15 is^73
λ
sq. units,
then the value of λ is- The minimum area bounded by the function
y = f(x) and y = αx + 9, (α ∈ R) where f satisfies the
relation f(x + y) = f(x) + f(y) +yfx xyR() ,∀∈and
f′(0) = 0 is 9A, then value of A is - Let R = {x, y : x^2 + y^2 ≤ 144 and sin(x + y) ≥ 0} and
S be the area of region given by R, then find S/9π. - If the area bounded by [x] + [y] = n and y = k;
n, k ∈ N and k ≤ (n + 1) and [.] greatest integer function,
in the first quadrant, is n + r, then find r.
SOLUTIONS - (b) : sin
sin( )
sin( )
sin( )x
xdx x
xdx
−= − +
∫∫α −αα
α= − + −
∫ −(sin( ) cos cos( )sin
sin( )xx
xαα ααdx
α
=+∫cosαααdx ∫sin ⋅−cot(x )dx
= xcosα + sinα · logsin(x – α) + c