∴ I= ∫
t
(^1) dt
3
1
34 / =
⎛
⎝
⎜
⎞
⎠
⎟+=
−
- ⎛
⎝⎜
⎞
⎠⎟ +
1
314
4
3
1
2
t^1414
c x
x
c
/ /
/
- (a) : I
x
dx dx
xx
=
+
=
∫ ∫ +
1
12 sin^222 sin cos
=
+
=
+
∫∫
sec
tan
sec
tan
2
2
2
212
1
2 1
2
xdx
x
xdx
x
Put tanx = t ⇒ sec^2 xdx = dt, then
I dt
t
= t k
+
= ⎛
⎝⎜
⎞
⎠⎟
⎛
⎝⎜
⎞
⎠⎟
(^1) ∫ − +
2 1
2
1
2
1
(^21212)
1
/
tan
/
=+^1 −
2
tan (^12 tan )xk
- (b) : Put tan–1(x^3 ) = z ⇒
(^1) ×=
1
6 3 2
x
xdx dz
Now, xx
x
dx zdz
213
1 6
1
3
tan (− )
- ∫∫=
=^1 ⋅ =+−
32
1
6
z^2132
(tan (xc))
- (d) : I x
x
==∫∫sin dx x⋅ xdx
cos
tan sec
3
5
(^232)
2
22
Putting tan2x = t and 2sec^22 xdx = dt, we get
I==∫tdt ⋅t+=cxc+
(^344)
2
1
24
1
8
(tan 2 )
- (d) :Put 2xdxd=sinθθθ⇒ 2 =cos
⇒ =
−
Iddc∫∫cos ==+
sin
θ
θ
θθθ
1 2
⇒ I = sin–1(2x) + c
- (b) : ∫fxdx gx() = ()(Given)
Now,Ifxdxfxdxd
dx
= ⋅ = − ⎧⎨ f x dx dx
⎩
⎫
⎬
⎭
−− −
∫ ∫ ∫ ∫
(^11) () () (^1) ()
=xf−−−−x−∫∫{}xd = −
dx
(^1111) () fxdxxfx xdfx() () { ()}
Let f–1(x)= t ⇒ x = f(t) and d{f–1(x)} = dt
∴Ixfx ftdtxfxgtxfxgfx= −−−−^1111 ()−∫ ()= () ()− = () {− ()}
- (b) : sin
sin cos
sin
sin cos
x
xx
dx x
xx
dx
−
=
∫∫−
1
2
2
= − ++
∫ −
1
2
(sin cos sin cos )
sin cos
xxxx
xx
dx
=++
−
⎛
⎝⎜
⎞
∫ ⎠⎟ =+ − +
1
2
1 1
2
sin cos
sin cos
xx [ log(sin cos )]
xx
dx x x x c
- (b) : Put logxt dxedt= ⇒ = t
log
(log ) ( )
x
x
dx e
t
t
t
− t dt
+
⎧
⎨
⎪
⎩⎪
⎫
⎬
⎪
⎭⎪
=
+
−
+
⎡
⎣
⎢
⎤
⎦
∫∫⎥
1
1
1
1
2
(^21)
2
222
- +=
e +
t
c x
x
c
t
1122 (log )
- (b) : Let x = tanθ ⇒ dx = sec^2 θdθ
fx xdx
xx
() d
()( )
tan sec
sec ( sec )
=
+++
=
∫ ∫ +
2
22
22
111 2 1
θθθ
θθ
=
+
=
+
=
−
∫∫ +
tan
sec
sin
cos ( cos )
(cos)
cos ( cos
22 2
11
1
1
θθ
θ
θθ
θθ
θθ
θ
dd d
∫ θθ)
=∫∫(cos)− =∫ −
cos
1 θθ sec
θ
d θθ θdd
=++log(xx 1 21 ) tan− − xc+
Now,fc( )=++log( ) tan ( )0010− −^1 + ⇒^ c = 0 0
∴ (^) f( ) log( ) tan ( ) log( )1111 112
4
=++^21 − − =+−π
- (c) : Ix xdx=∫cos−−^37 /(/)⋅(sin 2 37+ )
=∫cos−−^37 //xx xdxsin^2 sin^37
=
⎛
⎝
⎜
⎞
⎠
⎟
∫∫cos =
cos
sin
cos
/ cot
/
/
ec^2 ec
37
37
2
37
x
x
x
dx xdx
x
Put cotx = t ⇒ –cosec^2 xdx = dt
I dt
t
=−∫ 37 =−^7 tc^47 +
/ 4
/ =−^7 − +
4
tan^47 / xc
- (b) : LetId= ∫ cos sin
/
θθθ
π
3
0
2
Put t = cosθ ⇒ dt = –sinθdθ
It tdtttdt=−−∫^122 =∫^12 −^52
0
1
1
0
///() ( 1 )
⇒ (^) It t=⎡ −
⎣⎢
⎤
⎦⎥
(^2) =
3
2
7
8
21
32 72
0
1
//
- (c) : LetI
x
xdx
a
b
=∫^1 log
⇒ I xx
x
ab xdx
a
b
=[log .log ] −∫^1 log
⇒ 2 = ⇒ =^1 −
2
Ix I b a^222
a
[(log ) ]b [(log ) (log ) ]
⇒ =+ − = ⎛
⎝⎜
⎞
⎠⎟
Ibaba abb
a
1
2
1
2
[(log log )(log log )] log( ) log