Mathematics_Today_-_October_2016

(backadmin) #1
∴ I= ∫
t

(^1) dt
3
1
34 / =





⎟+=




  • ⎝⎜

    ⎠⎟ +
    1
    314
    4
    3
    1
    2
    t^1414
    c x
    x
    c
    / /
    /



  1. (a) : I
    x


dx dx
xx

=
+

=
∫ ∫ +

1
12 sin^222 sin cos

=
+

=
+

∫∫


sec
tan

sec
tan

2
2

2
212

1
2 1
2

xdx
x

xdx
x

Put tanx = t ⇒ sec^2 xdx = dt, then


I dt
t

= t k
+

= ⎛
⎝⎜


⎠⎟


⎝⎜


⎠⎟

(^1) ∫ − +
2 1
2
1
2
1
(^21212)
1
/
tan
/
=+^1 −
2
tan (^12 tan )xk



  1. (b) : Put tan–1(x^3 ) = z ⇒






(^1) ×=
1
6 3 2
x
xdx dz
Now, xx
x
dx zdz
213
1 6
1
3
tan (− )



  • ∫∫=
    =^1 ⋅ =+−
    32
    1
    6
    z^2132
    (tan (xc))



  1. (d) : I x
    x


==∫∫sin dx x⋅ xdx
cos

tan sec

3
5

(^232)
2
22
Putting tan2x = t and 2sec^22 xdx = dt, we get
I==∫tdt ⋅t+=cxc+
(^344)
2
1
24
1
8
(tan 2 )



  1. (d) :Put 2xdxd=sinθθθ⇒ 2 =cos


⇒ =

Iddc∫∫cos ==+
sin

θ
θ

θθθ
1 2
⇒ I = sin–1(2x) + c



  1. (b) : ∫fxdx gx() = ()(Given)


Now,Ifxdxfxdxd
dx

= ⋅ = − ⎧⎨ f x dx dx




−− −
∫ ∫ ∫ ∫

(^11) () () (^1) ()
=xf−−−−x−∫∫{}xd = −
dx
(^1111) () fxdxxfx xdfx() () { ()}
Let f–1(x)= t ⇒ x = f(t) and d{f–1(x)} = dt
∴Ixfx ftdtxfxgtxfxgfx= −−−−^1111 ()−∫ ()= () ()− = () {− ()}



  1. (b) : sin
    sin cos


sin
sin cos

x
xx

dx x
xx

dx

=
∫∫−

1
2

2

= − ++
∫ −

1
2

(sin cos sin cos )
sin cos

xxxx
xx

dx

=++


⎝⎜


∫ ⎠⎟ =+ − +

1
2

1 1
2

sin cos
sin cos

xx [ log(sin cos )]
xx

dx x x x c


  1. (b) : Put logxt dxedt= ⇒ = t
    log
    (log ) ( )


x
x

dx e
t

t
t

− t dt
+




⎩⎪




⎭⎪

=
+


+






∫∫⎥


1
1

1
1

2

(^21)
2
222



  • +=


  • e +
    t
    c x
    x
    c
    t
    1122 (log )





  1. (b) : Let x = tanθ ⇒ dx = sec^2 θdθ


fx xdx
xx

() d
()( )

tan sec
sec ( sec )

=
+++

=
∫ ∫ +

2
22

22

111 2 1

θθθ
θθ

=
+

=
+

=


∫∫ +

tan
sec

sin
cos ( cos )

(cos)
cos ( cos

22 2
11

1
1

θθ
θ

θθ
θθ

θθ
θ

dd d
∫ θθ)

=∫∫(cos)− =∫ −
cos

1 θθ sec
θ

d θθ θdd

=++log(xx 1 21 ) tan− − xc+
Now,fc( )=++log( ) tan ( )0010− −^1 + ⇒^ c = 0 0

∴ (^) f( ) log( ) tan ( ) log( )1111 112
4
=++^21 − − =+−π



  1. (c) : Ix xdx=∫cos−−^37 /(/)⋅(sin 2 37+ )
    =∫cos−−^37 //xx xdxsin^2 sin^37


=






∫∫cos =
cos
sin

cos
/ cot
/

/

ec^2 ec
37
37

2
37

x
x
x

dx xdx
x

Put cotx = t ⇒ –cosec^2 xdx = dt
I dt
t

=−∫ 37 =−^7 tc^47 +
/ 4

/ =−^7 − +
4

tan^47 / xc


  1. (b) : LetId= ∫ cos sin


/
θθθ

π
3
0

2

Put t = cosθ ⇒ dt = –sinθdθ

It tdtttdt=−−∫^122 =∫^12 −^52
0

1

1

0
///() ( 1 )

⇒ (^) It t=⎡ −
⎣⎢

⎦⎥
(^2) =
3
2
7
8
21
32 72
0
1
//



  1. (c) : LetI
    x


xdx
a

b
=∫^1 log

⇒ I xx
x
ab xdx
a

b
=[log .log ] −∫^1 log

⇒ 2 = ⇒ =^1 −
2

Ix I b a^222
a
[(log ) ]b [(log ) (log ) ]
⇒ =+ − = ⎛
⎝⎜


⎠⎟

Ibaba abb
a

1
2

1
2

[(log log )(log log )] log( ) log
Free download pdf