Mathematics_Today_-_October_2016

(backadmin) #1
SECTION-I
Single Correct Answer Type


  1. If AxBx


r
rr
r r

= ⎛−
⎝⎜


⎠⎟




⎩⎪




⎭⎪

=
=


=


∑ ∑

1
2

22
0 0

sin , sin , then

number of solution in [–2π, 2π] of
A:B = 4sin^2 x : (1 + cos2x) is
(a) 2 (b) 4 (c) 8 (d) none of these


  1. lim


()

x

r

rx

→∞ x

=

+

+















=

∑^2013
1

2013

2013 20132013

(a) 2014 (b) 2013 (c)^1
2013

(d) none of these


  1. If


dx
xx

xxce

(^323)
1

∫ =+α⎡⎣⎢γγlog | − |⎥⎤⎦+ , then
(a) α, β, γ are in A.P.
(b) α, β, γ are in G.P.
(c) α = β = γ (d) all of these



  1. If f(x) be an identity function, then equation


fx r
r

{}() (− + )− =
=

∑^20120


1
1

3
has

(a) no real roots (b) real and equal roots
(c) real and different roots
(d) none of these


  1. If sin x : sin y : sin z = cos A : cos B : cos C then


sin cos
sin cos

(^22) Ax
xA




⎜⎜


∑ ⎟⎟=
(a)
sin cos
sin cos
(^22) xA
xA

()( )
∑ ∑
∑∑
(b)
sin cos
sin cos
Ax
xA

∑∑−
(c)
(sin cos )
sin cos
Ax
Ax
∑ −

2
(d)
sin cos
(sin cos )
xA
xA
∑∑

()−()

22



  1. If xx xrr r pxx
    r


r r
r

()++++=<()
=


=


∑∑^12
00

|| , (^1) then
pr
r=
∑ =
0
671
(a) 0 (b) 2012 (c) 2015 (d) 2013



  1. If ∫(tan)^1 +=xxdx−^2 xfx+^1 ()+c, then f(x) =
    (a) x tan x (b) cot x
    (c) tan x (d) none of these

  2. If xsin^2 α + y + z = 0, x + ysin^2 β + z = 0 &
    x + y + zsin^2 γ = 0 (α ≠ β ≠ γ ≠ (2n + 1)π/2, where
    n ∈ I) have a non-trivial solution, then ∑tan^2 α =
    (a) 0 (b) 1 (c) 2 (d) none of these

  3. If ai > 0 (i = 1, 2, 3, 4) so that 502a 1 + 503a 2 + 504a 3


+ 505a 4 = 2014 and 256 a 1 a 2 a 3 a 4 ≥ ar
r=




⎜⎜



⎟⎟
1

4 4
,then

arr
r=

∑ =
1

4

(a) 2014 (b) 1 (c) 4 (d) none of these


  1. If x and y be two real variables satisfying


xyt
t

(^22) +=^2 −^1 and xyt
t
444
2
+=+^1 , then which
of the following is(are) true?
(a) y^2 + x–2 = 0 (b)
xydx
dy
(^3) =
(c) xdy + ydx = 0 (d) none of these
Duration : 30 minutes

Free download pdf