SECTION-I
Single Correct Answer Type
- If AxBx
r
rr
r r
= ⎛−
⎝⎜
⎞
⎠⎟
⎧
⎨
⎪
⎩⎪
⎫
⎬
⎪
⎭⎪
=
=
∞
=
∞
∑ ∑
1
2
22
0 0
sin , sin , then
number of solution in [–2π, 2π] of
A:B = 4sin^2 x : (1 + cos2x) is
(a) 2 (b) 4 (c) 8 (d) none of these
- lim
()
x
r
rx
→∞ x
=
+
+
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
=
∑^2013
1
2013
2013 20132013
(a) 2014 (b) 2013 (c)^1
2013
(d) none of these
- If
dx
xx
xxce
(^323)
1
−
∫ =+α⎡⎣⎢γγlog | − |⎥⎤⎦+ , then
(a) α, β, γ are in A.P.
(b) α, β, γ are in G.P.
(c) α = β = γ (d) all of these
- If f(x) be an identity function, then equation
fx r
r
{}() (− + )− =
=
∑^20120
1
1
3
has
(a) no real roots (b) real and equal roots
(c) real and different roots
(d) none of these
- If sin x : sin y : sin z = cos A : cos B : cos C then
sin cos
sin cos
(^22) Ax
xA
−
−
⎛
⎝
⎜⎜
⎞
⎠
∑ ⎟⎟=
(a)
sin cos
sin cos
(^22) xA
xA
−
()( )
∑ ∑
∑∑
(b)
sin cos
sin cos
Ax
xA
∑
∑∑−
(c)
(sin cos )
sin cos
Ax
Ax
∑ −
∑
2
(d)
sin cos
(sin cos )
xA
xA
∑∑
∑
()−()
−
22
- If xx xrr r pxx
r
r r
r
()++++=<()
=
∞
=
∞
∑∑^12
00
|| , (^1) then
pr
r=
∑ =
0
671
(a) 0 (b) 2012 (c) 2015 (d) 2013
- If ∫(tan)^1 +=xxdx−^2 xfx+^1 ()+c, then f(x) =
(a) x tan x (b) cot x
(c) tan x (d) none of these - If xsin^2 α + y + z = 0, x + ysin^2 β + z = 0 &
x + y + zsin^2 γ = 0 (α ≠ β ≠ γ ≠ (2n + 1)π/2, where
n ∈ I) have a non-trivial solution, then ∑tan^2 α =
(a) 0 (b) 1 (c) 2 (d) none of these - If ai > 0 (i = 1, 2, 3, 4) so that 502a 1 + 503a 2 + 504a 3
+ 505a 4 = 2014 and 256 a 1 a 2 a 3 a 4 ≥ ar
r=
∑
⎛
⎝
⎜⎜
⎞
⎠
⎟⎟
1
4 4
,then
arr
r=
∑ =
1
4
(a) 2014 (b) 1 (c) 4 (d) none of these
- If x and y be two real variables satisfying
xyt
t
(^22) +=^2 −^1 and xyt
t
444
2
+=+^1 , then which
of the following is(are) true?
(a) y^2 + x–2 = 0 (b)
xydx
dy
(^3) =
(c) xdy + ydx = 0 (d) none of these
Duration : 30 minutes