SECTION-II
Multiple Correct Answer Type- If G
GG
abc,, be unit vectors such that GG
abc⊥ , is
inclined at the same angle to both GG
aband and
GGcpaqbrab=++×G ()G G then
(a) p = q (b) |p| ≤ 1
(c) |q| ≤ 1 (d) pq > 1- If a, b, c be three positive numbers and (ab + bc
- ca)x^2 + (a + b + c)x + 1 = 0 has complex roots,
then
(a) acb+>
(b) abc++> 4
(c) 111 111
- ca)x^2 + (a + b + c)x + 1 = 0 has complex roots,
(^1110)
ab bc ca bc ca ab
ca ab bc
⎛ + −
⎝
⎜
⎞
⎠
⎟ + −
⎛
⎝
⎜
⎞
⎠
⎟
×+⎛ −
⎝⎜
⎞
⎠⎟
(d) none of these
- If a sin θ + b cos θ = c = a cosec θ + b sec θ,then
(a) sin 2θ= 2222
−−ab
cab(b)
tan^3 θ=a
b
(c) a cos^3 θ + b sin^3 θ = 0(d)
sinθθ+=cosec acb+ −
ac222- Let fx x()= {}x
1
(where {·} denotes the fractional
part of x) then
(a)
lim ( )
xf x
→+=
02013 2013(b)
lim ( )
xf x
→−=
02013 1(c)
lim ( )
xfex
→+=
02013(d)
lim ( )
xf x
→ 02013 does not exist- A person draws 3 balls randomly from a bag
containing 3 white and 3 black balls and then he
put 3 red balls into the bag and draws 3 balls again
randomly. The probability that now he has all 3
balls of different colour is
(a) > 20 % (b) > 25 %
(c) > 30 % (d) > 33 %
SOLUTIONS- (c) :
Axxxr
r
r= ⎛−
⎝⎜⎞
⎠⎟⎧
⎨⎪
⎩⎪⎫
⎬⎪
⎭⎪=− + −∞
=∞
∑1
21 1
21
42
0sin sin^24 sin ... to=
−−⎛
⎝⎜⎞
⎠⎟=
+1
1 1
22
sin^2 x^2 sin^2 xB rxxx
r==+++∞
=∞
∑sin^2 sin sin ...
01to^24 =^1
cos^2 x∴ =+⇒
+AB x x x=
xx
x: sin :( cos ) cos
sinsin
cos4122
24
22 2
22
2⇒ cos^4 x = 2sin^2 x + sin^4 x ⇒sinx=±^1
2
Hence, there will be 8 solutions in [–2π, 2π]- (b) :
lim( ) ( ) .... ( )
xxx x
→∞ x{}++++++
+1 2 2013
20132013 2013 2013
2013 20133=⎛ +
⎝⎜⎞
⎠⎟++⎛
⎝⎜⎞
⎠⎟++→∞lim...........xx^2013 xx1 2013 2013
1 2 12013
xxx
x⎛ +
⎝⎜⎞
⎠⎟⎧⎨⎪
⎪⎩⎪
⎪⎫⎬⎪
⎪⎭⎪
⎪+⎛
⎝⎜⎞
⎠⎟⎛⎝⎜
⎜⎞⎠⎟
⎟11 2013201320132013= ++++++
+( 01 ) ( 01 ) .... ( 01 ) =
1020132013 2013 2013[As x → ∞, 1/x → 0]- (d) : Let x = z^3 ⇒ dx = 3z^2 dz
3 2
2
zdz
∫zz−
=
−= − +
∫∫−
3
13 11
1zdz
zz
z()dz=+ (^313) []zzcx x clog | − |+=⎡⎣^33 +log | − 1 |⎤⎦+
⇒ α = β = γ = 3 ⇒ α, β, γ are in A.P. and G.P. both.
- (c) : ... f(x) is an identity function ∴ f(x) = x
∴ Given equation becomes
xr
r{}− + − =
=∑ ()^20120
1
13⇒
−+
−+
−(^1) =
2013
1
2014
1
2015
0
xxx