SECTION-II
Multiple Correct Answer Type
- If G
GG
abc,, be unit vectors such that G
G
abc⊥ , is
inclined at the same angle to both G
G
aband and
GGcpaqbrab=++×G ()G G then
(a) p = q (b) |p| ≤ 1
(c) |q| ≤ 1 (d) pq > 1
- If a, b, c be three positive numbers and (ab + bc
- ca)x^2 + (a + b + c)x + 1 = 0 has complex roots,
then
(a) acb+>
(b) abc++> 4
(c) 111 111
- ca)x^2 + (a + b + c)x + 1 = 0 has complex roots,
(^1110)
ab bc ca bc ca ab
ca ab bc
⎛ + −
⎝
⎜
⎞
⎠
⎟ + −
⎛
⎝
⎜
⎞
⎠
⎟
×+⎛ −
⎝⎜
⎞
⎠⎟
(d) none of these
- If a sin θ + b cos θ = c = a cosec θ + b sec θ,then
(a) sin 2θ= 2222
−−
ab
cab
(b)
tan^3 θ=a
b
(c) a cos^3 θ + b sin^3 θ = 0
(d)
sinθθ+=cosec acb+ −
ac
222
- Let fx x()= {}x
1
(where {·} denotes the fractional
part of x) then
(a)
lim ( )
x
f x
→+
=
0
2013 2013
(b)
lim ( )
x
f x
→−
=
0
2013 1
(c)
lim ( )
x
fex
→+
=
0
2013
(d)
lim ( )
x
f x
→ 0
2013 does not exist
- A person draws 3 balls randomly from a bag
containing 3 white and 3 black balls and then he
put 3 red balls into the bag and draws 3 balls again
randomly. The probability that now he has all 3
balls of different colour is
(a) > 20 % (b) > 25 %
(c) > 30 % (d) > 33 %
SOLUTIONS
- (c) :
Axxx
r
r
r
= ⎛−
⎝⎜
⎞
⎠⎟
⎧
⎨
⎪
⎩⎪
⎫
⎬
⎪
⎭⎪
=− + −∞
=
∞
∑
1
2
1 1
2
1
4
2
0
sin sin^24 sin ... to
=
−−⎛
⎝⎜
⎞
⎠⎟
=
+
1
1 1
2
2
sin^2 x^2 sin^2 x
B rxxx
r
==+++∞
=
∞
∑sin^2 sin sin ...
0
1to^24 =^1
cos^2 x
∴ =+⇒
+
AB x x x=
x
x
x
: sin :( cos ) cos
sin
sin
cos
4122
2
4
2
2 2
2
2
2
⇒ cos^4 x = 2sin^2 x + sin^4 x ⇒sinx=±^1
2
Hence, there will be 8 solutions in [–2π, 2π]
- (b) :
lim
( ) ( ) .... ( )
x
xx x
→∞ x
{}++++++
+
1 2 2013
2013
2013 2013 2013
2013 20133
=
⎛ +
⎝⎜
⎞
⎠⎟
++⎛
⎝⎜
⎞
⎠⎟
+
+
→∞
lim
...........
x
x^2013 xx
1 2013 2013
1 2 1
2013
xx
x
x
⎛ +
⎝⎜
⎞
⎠⎟
⎧
⎨
⎪
⎪
⎩
⎪
⎪
⎫
⎬
⎪
⎪
⎭
⎪
⎪
+⎛
⎝⎜
⎞
⎠⎟
⎛
⎝
⎜
⎜
⎞
⎠
⎟
⎟
1
1 2013
2013
2013
2013
= ++++++
+
( 01 ) ( 01 ) .... ( 01 ) =
10
2013
2013 2013 2013
[As x → ∞, 1/x → 0]
- (d) : Let x = z^3 ⇒ dx = 3z^2 dz
3 2
2
zdz
∫zz−
=
−
= − +
∫∫−
3
1
3 11
1
zdz
z
z
z
()dz
=+ (^313) []zzcx x clog | − |+=⎡⎣^33 +log | − 1 |⎤⎦+
⇒ α = β = γ = 3 ⇒ α, β, γ are in A.P. and G.P. both.
- (c) : ... f(x) is an identity function ∴ f(x) = x
∴ Given equation becomes
xr
r
{}− + − =
=
∑ ()^20120
1
1
3
⇒
−
+
−
+
−
(^1) =
2013
1
2014
1
2015
0
xxx