Similarly, cosθ=.GG
bc^ ...(ii)
∵ GG GG
ab ab⊥∴. = 0
Also, GGG G G
cpaqbrab=++×()
∴ GG GG G=++ ×G GGG
ac paa qab ra a b.. ..()
= p + 0 + 0 = p ⇒ cos θ = p ∴ |p| = |cos θ| ≤ 1
Similarly, cosθ = q ⇒ |q| ≤ 1
Also, p = q.- (a, c) : ... Roots are complex
∴ D < 0 ⇒ (a + b + c)^2 – 4 (ab + bc + ca) < 0
⇒ (a + c)^2 + b^2 + 2b(a + c) – 4b(a + c) < 4 ac
⇒ (a + c – b)^2 < 4 ac ⇒ − 22 ac<+a c b− < ac
⇒ ()ac b acb+>^2 ⇒ +>⇒()a is correct.
⇒ acb+ − > ⇒ + − >
bc ab ca0 1110Similarly,(^11101110)
bc ca ab ca ab bc
- − >+and − >
∴ On multiplying,
111
111 111 0
ab bc ca
bc ca ab ca ab bc
⎛ + −
⎝
⎜
⎞
⎠
⎟
⎛ + −
⎝
⎜
⎞
⎠
⎟ + −
⎛
⎝
⎜
⎞
⎠
⎟>
⇒ (c) is correct.
- (a, c, d) : ... a sinθ + b cosθ = c ...(i)
& a cosec θ + b sec θ = c ...(ii)
∴ On multiplying, abab^22 ++⎛ + c^2
⎝⎜
⎞
⎠⎟sin =
coscos
sinθ
θθ
θ
⇒ ++⎛
⎝⎜⎞
⎠⎟ab ab^2221 =c^2
sin 2 θ∴ =
−−sin2θ 2222 ab
cab
From (i) & (ii), a sin θ + bcosθ = a cosec θ + b secθ⇒−⎛
⎝⎜⎞
⎠⎟+ ⎛ −
⎝⎜⎞
⎠⎟ab^11 = 0
sinsin
coscos
θθ
θθ⇒abcos +=
sinsin
cos22
θ 0
θθ
θ∴abcos^33 θθ+=sin 0From (i), b cos θ = c – a sinθ ...(iii)
& from (ii), b sec θ = c – a cosec θ ...(iv)
From (iii) & (iv), b^2 = c^2 + a^2 – ac (sinθ + cosecθ)∴ sinθθ+=cosec acb+ −
ac222- (b,c,d) :
... If x → 0 +, 2013x ∈ (1, 2) ⇒ {2013x} = 2013x – 1
And, x → 0 – , 2013x ∈ (0, 1) ⇒ {2013x} = 2013x
lim ( ) lim ( )
xx
xf x x
→→{}
00 ++=1
2013
2013 2013=
→−
xlim (+ )x x
01
2013 2013 1=
→lim ( ) − (∞ )
hh h
01
2013 2013 1 1 form==→()−
−⎡
⎣⎢⎢⎤
⎦⎥⎥
eehh
lim 0 2013 1 .()h
1
2013 1
And,lim ( ) lim
xx
xf xx→→−−{}
= ()
002013 20131
2013= ()= ()
→ →−
−{}−
lim lim
xx
hhx h0 02013 201301
20131
20130= ()==
→−−
lim
hhh02013 11 11
2013... R.H.L ≠ L.H.L
⇒ lim ( )
xf x
→ 02013 does not exist- (a, b) : Diagramatically
Clearly, required probability= ×⎛⎝⎜
⎜⎞⎠⎟
⎟×⎛ ××⎝⎜
⎜⎞⎠⎟
⎟⎡⎣⎢
⎢⎤⎦⎥
⎥23
13
2
6
31
12
13
1
6
3CC
CCCC
C= ⋅⋅⋅⋅⋅
⋅(^233123) ==
20 20
27
100
27%