Lake Pavin History, geology, biogeochemistry, and sedimentology of a deep meromictic maar lake

(Chris Devlin) #1

280


Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of
the Archaea: evolution of methanogenesis and methanogens.
Archaea 1:353–363
Bastviken D (2009) Methane. In: Likens G (ed) Encyclopedia of inland
waters. Elsevier, Oxford, pp 783–805
Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane
oxidation in lakes- a comparison of methods. Environ Sci Technol
36:3354–3361
Bastviken D, Ejlertsson J, Sundh I, Tranvik L (2003) Methane as a
source of carbon and energy for lake pelagic food webs. Ecology
84:969–981
Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions
from lakes: dependence of lake characteristics, two regional assess-
ments, and a global estimate. Global Biogeochem Cycles
18:GB4009
Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of
methane from different lake habitats: connecting whole-lake bud-
gets and CH 4 emissions. J Geophys Res 113:G02024
Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of
prokaryote evolution: insights into the origin of methanogenesis,
phototrophy, and the colonization of land. BMC Evol Biol 4:44
Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent
marine methane oxidation. Science 325:184–187
Bedard C, Knowles R (1989) Physiology, biochemistry, and specific
inhibitors of CH 4 , NH 4 +, and CO oxidation by methanotrophs and
nitrifiers. Microbiol Rev 53:68–84
Belaich JP (1980) Growth and metabolism in bacteria. In: Beezer AE
(ed) Biological microcalorimetry. Academic, London, pp 1–42
Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN
(2011) Acetate utilization as a survival strategy of peat-inhabiting
Methylocystis spp. Environ Microbiol Rep 3:36–46
Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel
G, Viollier E, Fonty G, Peyret P (2011) Identification of microbial
communities involved in the methane cycle in a freshwater
meromictic lake. FEMS Microbiol Ecol 77:533–545
Birgel D, Peckmann J (2008) Aerobic methanotrophy at ancient marine
methane seeps: a synthesis. Org Geochem 39:1659–1667
Birou B, von Stockar U (1989) Application of bench-scale calorimetry
to chemostat cultures. Enzyme Microb Technol 11:12–16
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke
A, Amann R, Jorgensen BB, Witte U et al (2000) A marine micro-
bial consortium apparently mediating anaerobic oxidation of meth-
ane. Nature 407:623–626
Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP,
Peyret P, Fonty G, Lehours AC (2011) Production and consumption
of methane in freshwater lake ecosystems. Res Microbiol
162:832–847
Borrel G, Lehours AC, Crouzet O, Jézéquel D, Rockne D, Kulczak A,
Duffaud E, Joblin K, Fonty G (2012a) Stratification of Archaea in
the deep sediments of a freshwater meromictic lake: vertical shift
from methanogenic to uncultured archaeal lineages. PlosOne
7:e43346
Borrel G, Joblin K, Guedon A, Colombet J, Tardy V, Lehours AC, Fonty
G (2012b) Methanobacterium lacus sp. nov., isolated from the pro-
fundal sediment of a freshwater meromictic lake. Int J Syst Evol
Microbiol 62:1625–1629
Borrel G, Colombet J, Robin A, Lehours AC, Prangishvili D, Sime-
Ngando T (2012c) Unexpected and novel putative viruses in the
sediments of a deep-dark permanently anoxic freshwater habitat.
ISME J 6:2119–2127
Borrel G, O’Toole PW, Harris HM, Peyret P, Brugère JF, Gribaldo S
(2013) Phylogenomic data support a seventh order of methylotro-
phic methanogens and provide insights into the evolution of metha-
nogenesis. Genome Biol Evol 5:1769–1780
Borrel G, Parisot N, Harris HMB, Peyrtaillade E, Gaci N, Tottey W,
Bardot O, Raymann K, Gribaldo S, Peyret P, O’Toole PW, Brugère


JF (2014) Comparative genomics highlights the unique biology of
Methanomassiliicoccales, a Thermoplasmatales-related seventh
order of methanogenic archaea that encodes pyrrolysine. BMC
Genomics 15:679
Braissant O, Bonkat G, Wirz D, Bachmann A (2013) Microbial growth
and isothermal microcalorimetry: growth models and their applica-
tion to microcalorimetric data. Thermochimica Acta 555:64–71
Bricheux G, Bonnet JL, Bohatier J, Morel JP, Morel-Desrosiers N
(2013) Microcalorimetry: a powerful and original tool for tracking
the toxicity of a xenobiotic on Tetrahymena pyriformis. Ecotoxicol
Environ Saf 98:88–94
Briee C, Moreira D, Lopez-Garcia P (2007) Archaeal and bacterial
community composition of sediment and plankton from a suboxic
freshwater pond. Res Microbiol 158:213–227
Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008)
Mesophilic Crenarchaeota: proposal for a third archaeal phylum,
the Thaumarchaeota. Nat Rev Microbiol 6:245–252
Brugère JF, Borrel G, Gaci N, Tottey W, O’Toole PW, Malpuech-
Brugère C (2013) Archaebiotics: proposed therapeutic use of
archaea to prevent trimethylaminuria and cardiovascular disease.
Gut Microbes 5:5–10
Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of
denitrification in aquatic ecosystems? A review of nitrate removal
pathways. Front Ecol Environ 5:89–96
Case RJ, Boucher Y, Dahllof I, Holmstrom C, Doolittle WF, Kelleberg
S (2007) Use of 16S rRNA and rpoB genes as molecular markers for
microbial ecology studies. Appl Environ Microbiol 73:278–288
Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005)
Vertical distribution of structure and function of the methanogenic
archaeal community in Lake Dagow sediment. Environ Microbiol
7:1139–1149
Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmo-
spheric methane. Global Biogeochem Cycles 2:299–327
Conrad R (1999) Contribution of hydrogen to methane production and
control of hydrogen concentrations in methanogenic soils and sedi-
ments. FEMS Microbiol Ecol 28:193–202
Conrad R (2009) The global methane cycle: recent advances in under-
standing the microbial processes involved. Environ Microbiol Rep
1:285–292
Conrad R, Klose M, Claus P, Enrich-Prast A (2010) Methanogenic
pathway, C-13 isotope fractionation, and archaeal community com-
position in the sediment of two clear-water lakes of Amazonia.
Limnol Oceanogr 55:689–702
Costello AM, Auman AJ, Macalady JL, Scow KM, Lidstrom ME
(2002) Estimation of methanotroph abundance in a freshwater lake
sediment. Environ Microbiol 4:443–450
Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are fac-
ultatively methanotrophic. J Bacteriol 187:4665–4670
Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN,
Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007)
Methylocystis heyeri sp. nov., a novel type II methanotrophic bacte-
rium possessing ‘signature’ fatty acids of type I methanotrophs. Int
J Syst Evol Microbiol 57:472–479
Deines P, Grey J, Richnow HH, Eller G (2007) Linking larval chirono-
mids to methane: seasonal variation of the microbial methane cycle
and chironomid delta C-13. Aquat Microb Ecol 46:273–282
Drake HL, Daniel SL, Matthies C, Küsel K (1994) Acetogenesis, aceto-
genic bacteria, and the acethyl-CoA pathway: past and current per-
spectives. In: Drake HL (ed) Acetogenesis. Chapman and Hall,
New York, pp 3–60
Drake HL, Küsel K, Matthies C (2006) Acetogenic prokaryotes. In:
Dworkin M, Falkow S, Rosenberg E, Schleifer KH (eds) The pro-
karyotes, vol 2, Ecophysiology and biochemistry. Springer,
New York, pp 354–420
Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012)
Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methano-

A.-C. Lehours et al.
Free download pdf