Lake Pavin History, geology, biogeochemistry, and sedimentology of a deep meromictic maar lake

(Chris Devlin) #1
281

genic archaeon isolated from human faeces. Int J Syst Evol Mirobiol
62:1902–1907
Dubrunfault M (1856) Note sur la chaleur et le travail mécanique
produits par la fermentation vineuse. Compt Rend 42:945–948
Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou SB, Ly B,
Saw JH, Zhou ZM, Ren Y, Wang JM, Mountain BW, Crowe MA,
Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam
M (2007) Methane oxidation by an extremely acidophilic bacterium
of the phylum Verrucomicrobia. Nature 450:879–882
Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010)
Methylocapsa aurea sp. nov., a facultative methanotroph possessing
a particulate methane monooxygenase, and emended description of
the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664
Ehrlich HL, Newman DK (2008) Geomicrobiology of iron. In: Ehrilich
HL, Newman DK (eds) Geomicrobiology, vol 5. CRC Press, Boca
Raton, pp 279–329
EPA (United States Environmental Protection Agency) (2010) Methane
and nitrous oxide emissions from natural sources. Office of atmo-
spheric programs, Washington. Available at http://www.epa.gov/
outreach/pdfs/Methane-and-Nitrous-Oxide-Emissions-From-
Natural-Sources.pdf
Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH,
Op den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying
bacteria anaerobically oxidize methane in the absence of Archaea.
Environ Microbiol 10:3164–3173
Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous
M (2009) Enrichment and molecular detection of denitrifying meth-
anotrophic bacteria of the NC10 phylum. Appl Environ Microbiol
75:3656–3662
Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers
MMM, Schreiber F, Dutilh BE, Zedelius J et al (2010) Nitrite-
driven anaerobic methane oxidation by oxygenic bacteria. Nature
464:543–548
Ferry JG (2010) The chemical biology of methanogenesis. Planet Space
Sci 58:1775–1783
Frenzel P (2000) Plant-associated methane oxidation in rice fields and
wetlands. Adv Microb Ecol 16:85–114
Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R,
Gottschalk G, Thauer RK (2006) The genome sequence of
Methanosphaera stadtmanae reveals why this human intestinal
archaeon is restricted to methanol and H 2 for methane formation and
ATP synthesis. J Bacteriol 188:642–658
Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS
Microbiol Rev 87:297–308
Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic and
ecological diversity of methanogenic archaea. Anaerobe
6:205–226
Glissmann K, Chin KJ, Casper P, Conrad R (2004) Methanogenic path-
way and archaeal community structure in the sediment of eutrophic
Lake Dagow: effect of temperature. Microb Ecol 48:389–399
Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW (2011)
Microbial methane production in oxygenated water column of an
oligotrophic lake. Proc Natl Acad Sci U S A 108:19657–19661
Guimbaud C, Catoire V, Gogo S, Robert C, Chartier M, Laggoun-
Défarge F, Grossel A, Albéric P, Pomathiod L, Nicoullaud B,
Richard G (2011) A portable infrared laser spectrometer for flux
measurements of trace gases at the geosphere-atmosphere interface.
Meas Sci Technol 22:1–17
Gustafsson L (1991) Microbiological calorimetry. Thermochimica Acta
193:145–171
Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF
(2003) Identification of methyl coenzyme M reductase A (mcrA)
genes associated with methane-oxidizing archaea. Appl Environ
Microbiol 69:5483–5491


Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson
PM, DeLong EF (2004) Reverse methanogenesis: testing the
hypothesis with environmental genomics. Science 305:1457–1462
Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol
Rev 60:439–471
Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholz P, Yuan Z,
Tyson GW (2013) Anaerobic oxidation of methane coupled to
nitrate reduction in a novel archaeal lineage. Nature 500:567–570
Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in
archaeal and bacterial diversity associated with the sulfate-methane
transition zone in continental margin sediments (Santa Barbara
Basin, California). Appl Environ Microbiol 75:1487–1499
Hedderich R, Whitman W (2006) Physiology and biochemistry of the
methane-producing Archaea. In: Dworkin M, Falkow S, Rosenberg
E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer,
New York, pp 1050–1079
Ianotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fer-
mentation products of Ruminococcus albus grown in continuous
culture with Vibrio succinogenes: changes caused by interspecies
transfer of H 2. J Bacteriol 114:1231–1240
Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi
Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel
methanogen from the anaerobic digested sludge, and proposal of
Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales
ord. nov., for a methanogenic lineage of the class Thermoplasmata.
Microbes Environ 28:244–250
Im J, Lee SW, Yoon S, DiSpirito AA, Semrau JD (2011) Characterization
of a novel facultative Methylocystis species capable of growth on
methane, acetate and ethanol. Environ Microbiol Rep 3:174–181
Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki
M, Takai K, Delwiche M et al (2006) Biogeographical distribution
and diversity of microbes in methane hydrate-bearing deep marine
sediments on the Pacific Ocean Margin. Proc Natl Acad Sci U S A
103:2815–2820
IPCC (2007) Climate change 2007: the physical science basis. In:
Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB
et al (eds) contribution of working group I to the fourth assessment
report of the intergovermmental panel on climate change (IPCC).
Cambridge University Press, Cambridge, UK/New York
Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008)
Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic
bacterium belonging to the Verrucomicrobia phylum. Proc Natl
Acad Sci U S A 105:300–304
Islas-Lima S, Thalasso F, Gómez-Hernandez J (2004) Evidence of
anoxic methane oxidation coupled to denitrification. Water Res
38:13–16
Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from
acetate - a comparison of the acetate metabolism in Methanothrix
soehngenii and Methanosarcina spp. FEMS Microbiol Rev
88:181–197
Jézéquel D, Michard G, Viollier E, Prévot F, Groleau A, Sarazin G,
Lopes F (2010) Le cycle du carbone et les risques d’éruption
gazeuse au Pavin. Rev Sci Nat Auver 74:67–86
Kankaala P, Taipale S, Grey J, Sonninen E, Arvola L, Jones RI (2006)
Experimental delta C-13 evidence for a contribution of methane to
pelagic food webs in lakes. Limnol Oceanogr 51:2821–2827
Kaserer H (1905) Ueber die oxydation des wasserstofes und des meth-
ane durch mikroorganismen (Sur l’oxydation de l’hydrogène et du
méthane par les microorganismes). Z landw Versuchsw in Osterreich
8:789–792
Kiyashko SI, Imbs AB, Narita T, Svetashev VI, Wada E (2004) Fatty
acid composition of aquatic insect larvae Stictochironomus pictulus
(Diptera: Chironomidae): evidence of feeding upon methanotrophic
bacteria. Comp Biochem Physiol B Biochem Mol Biol
139:705–711

16 Methanogens and Methanotrophs in Lake Pavin


http://www.ebook3000.com

Free download pdf