The Lotus japonicus Genome

(Steven Felgate) #1

Acknowledgements We acknowledgefinancial support
for our research program from The Danish Council for
Independent Research | Natural Sciences.


References


Abrahams S, Lee E, Walker AR et al (2003) The
Arabidopsis TDS4 gene encodes leucoanthocyanidin
dioxygenase (LDOX) and is essential for proanthocy-
anidin synthesis and vacuole development. Plant J
35:624– 636
Akashi T, Sawada Y, Shimada N et al (2003) cDNA
cloning and biochemical characterization ofS-adeno-
syl-L-methionine: 2,7,4′-trihydroxyisoflavanone 4′-O-
methyltransferase, a critical enzyme of the legume
isoflavonoid phytoalexin pathway. Plant Cell Physiol
44:103– 112
Akashi T, Aoki T, Ayabe S (2005) Molecular and
biochemical characterization of 2-hydroxyisoflava-
none dehydratase. Involvement of carboxylesterase-
like proteins in leguminous isoflavone biosynthesis.
Plant Physiol 137:882– 891
Akashi T, Koshimizu S, Aoki T et al (2006) Identification
of cDNAs encoding pterocarpan reductase involved in
isoflavan phytoalexin biosynthesis inLotus japonicus
by EST mining. FEBS Lett 580:5666– 5670
Augustin JM, Kuzina V, Andersen et al (2011) Molecular
activities, biosynthesis and evolution of triterpenoid
saponins. Phytochemistry 72:435– 457
Ballhorn DJ, Pietrowski A, Lieberei R (2010) Direct
trade-off between cyanogenesis and resistance to a
fungal pathogen in lima bean (Phaseolus lunatusL.).
J Ecol 98:226– 236
Barbehenn RV, Constabel CP (2011) Tannins in plant-
herbivore interactions. Phytochemistry 72:1551– 1565
Bergero R, Charlesworth D (2008) The evolution of
restricted recombination in sex chromosomes. Trends
Ecol Evol 24:94– 102
Bjarnholt N, Rook F, Motawia MS et al (2008) Diver-
sification of an ancient theme: hydroxynitrile gluco-
sides. Phytochemistry 69:1507– 1516
Bjarnholt N, Møller BL (2008) Hydroxynitrile glucosides.
Phytochemistry 69:1947– 1961
Bogs J, Jaffe FW, Takos AM et al (2007) The grapevine
transcription factor VvMYBPA1 regulates proantho-
cyanidin synthesis during fruit development. Plant
Physiol 143:1347– 1361
Bonde MR, Millar RL, Ingham JL (1973) Induction and
identification of sativan and vestitol as two phytoal-
exins from Lotus corniculatus. Phytochemistry
12:2957– 2959
Carelli M, Biazzi E, Panara F et al (2011)Medicago
truncatulaCYP716A12 is a multifunctional oxidase
involved in the biosynthesis of hemolytic saponins.
Plant Cell 23:3070– 3081
Chu HY, Wegel E, Osbourn A (2011) From hormones to
secondary metabolism: the emergence of metabolic
gene clusters in plants. Plant J 66:66– 79


Cooper JE (2007) Early interactions between legumes and
rhizobia: disclosing complexity in a molecular dia-
logue. J Appl Microbiol 103:1355– 1365
Cornwell T, Cohick W, Raskin I (2004) Dietary phytoes-
trogens and health. Phytochemistry 65:995– 1016
Debeaujon I, Peeters AJM, Leon-Kloosterziel KM et al
(2001) The TRANSPARENT TESTA 12 gene of
Arabidopsis encodes a multidrug secondary trans-
porter-like protein required forflavonoid sequestration
in vacuoles of the seed coat endothelium. Plant Cell
13:853– 871
Delis C, Krokida A, Georgiou S et al (2011) Role of
lupeol synthase inLotus japonicusnodule formation.
New Phytol 189:335– 346
Dixon RA, Liu C, Jun JH (2013) Metabolic engineering
of anthocyanins and condensed tannins in plants. Curr
Opin Biotech 24:329– 335
Field B, Osbourn AE (2008) Metabolic diversification—
independent assembly of operon-like gene clusters in
different plants. Science 320:543– 547
Field B, Fiston-Lavier A-S, Kemen A et al (2011)
Formation of plant metabolic gene clusters within
dynamic chromosomal regions. Proc Natl Acad Sci
USA 108:16116– 16121
Fisher RA (1930) The genetical theory of natural
selection. Oxford University Press, Oxford
Forslund K, Morant M, Jørgensen B et al (2004) Biosyn-
thesis of the nitrile glucosides rhodiocyanoside A and D
and the cyanogenic glucosides lotaustralin and linam-
arin inLotus japonicus. Plant Physiol 135:71– 84
Frey M, Chomet P, Glawischnig E et al (1997) Analysis
of a chemical plant defense mechanism in grasses.
Science 277:696– 699
Golea L, Haba H, Lavaud C et al (2012) Chemical
constituents fromLotus pusillusMedik. Biochem Syst
Ecol 45:12– 15
Gruber M, Skadhauge B, Yu M et al (2008) Variation in
morphology, plant habit, proanthocyanidins, and
flavonoids within aLotusgermplasm collection. Can
J Plant Sci 88:121– 132
Guo L, Dixon RA, Paiva NL (1994) Conversion of
vestitone to medicarpin in alfalfa (Medicago sativaL.)
is catalyzed by two independent enzymes. Identifica-
tion, purification, and characterization of vestitone
reductase and 7,2′-dihydroxy-4′-methoxyisoflavanol
dehydratase. J Biol Chem 269:22372– 22378
Hassan S, Mathesius U (2012) The role offlavonoids in
root-rhizosphere signalling: opportunities and chal-
lenges for improving plant-microbe interactions. J Exp
Bot 63:3429– 3444
Itkin M, Heinig U, Tzfadia O et al (2013) Biosynthesis of
antinutritional alkaloids in solanaceous crops is med-
iated by clustered genes. Science 341:175– 179
Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K et al
(2003) Molecular cloning and characterization of
triterpene synthases fromMedicago truncatulaand
Lotus japonicus. Plant Mol Biol 51:731– 743
Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a
mechanistic and evolutionary perspective. Annu Rev
Biochem 79:471– 505

160 A.M. Takos and F. Rook

Free download pdf