292
Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917–927.
doi:10.1038/nrg1725
Martinez Barbera JP, Clements M, Thomas P et al (2000) The homeobox gene Hex is required in
definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development
127:2433–2445
Martyn U, Schulte-Merker S (2003) The ventralized ogon mutant phenotype is caused by a muta-
tion in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. Dev Biol
260:58–67
Marvin MJ, Di Rocco G, Gardiner A et al (2001) Inhibition of Wnt activity induces heart forma-
tion from posterior mesoderm. Genes Dev 15:316–327. doi:10.1101/gad.855501
Maung S, Jenny A (2011) Planar cell polarity in Drosophila. Organogenesis 7(3):165–179
McCracken KW, Catá EM, Crawford CM et al (2014) Modelling human development and dis-
ease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404. doi:10.1038/
nature13863
McGrew LL, Hoppler S, Moon RT (1997) Wnt and FGF pathways cooperatively pattern antero-
posterior neural ectoderm in Xenopus. Mech Dev 69:105–114
McMahon AP, Moon RT (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus
embryos leads to duplication of the embryonic axis. Cell 58:1075–1084
Mei W, Jin Z, Lai F et al (2013) Maternal Dead-End1 is required for vegetal cortical microtu-
bule assembly during Xenopus axis specification. Development 140:2334–2344. doi:10.1242/
dev.094748
Meinhardt H (2012) Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the
crucial role of local self-enhancement and long-range inhibition. Interface Focus 2:407–416.
doi:10.1098/rsfs.2011.0097
Melby AE, Beach C, Mullins M, Kimelman D (2000) Patterning the early zebrafish by the opposing
actions of bozozok and vox/vent. Dev Biol 224(2):275–285
Melton DA (1987) Translocation of a localized maternal mRNA to the vegetal pole of Xenopus
oocytes. Nature 328:80–82. doi:10.1038/328080a0
Meneghini M, Ishitani T, Carter J et al (1999) MAP kinase and Wnt pathways converge to down-
regulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399:793–797
Merrill BJ, Pasolli HA, Polak L et al (2004) Tcf3: a transcriptional regulator of axis induction in
the early embryo. Development 131:263–274. doi:10.1242/dev.00935
Mesnard D, Guzman-Ayala M, Constam DB (2006) Nodal specifies embryonic visceral endo-
derm and sustains pluripotent cells in the epiblast before overt axial patterning. Development
133:2497–2505. doi:10.1242/dev.02413
Messenger NJ, Kabitschke C, Andrews R et al (2005) Functional specificity of the Xenopus
T-domain protein Brachyury is conferred by its ability to interact with Smad1. Dev Cell 8:599–
- doi:10.1016/j.devcel.2005.03.001
Metcalfe C, Bienz M (2011) Inhibition of GSK3 by Wnt signalling—two contrasting models.
J Cell Sci 124:3537–3544. doi:10.1242/jcs.091991
Mieszczanek J, de la Roche M, Bienz M (2008) A role of Pygopus as an anti-repressor in facilitat-
ing Wnt-dependent transcription. Proc Natl Acad Sci U S A 105:19324–19329. doi:10.1073/
pnas.0806098105
Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling
depending on receptor context. PLoS Biol 4:e115. doi:10.1371/journal.pbio.0040115
Miller J, Rowning B, Larabell C et al (1999) Establishment of the dorsal-ventral axis in Xenopus
embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rota-
tion. J Cell Biol 146:427–437
Mintz B (1964) Gene expression in the morula stage of mouse embryos, as observed during devel-
opment of t12/t12 lethal mutants in vitro. J Exp Zool 157:267–272
Mintzer KA, Lee MA, Runke G, Trout J, Whitman M, Mullins MC (2001) Lost-a-fin encodes a
type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern forma-
tion. Development 128:859–869
D.W. Houston