227
- Cox EJ, Marsh SA (2013) Exercise and diabetes have opposite effects on the assembly and
O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol
12:101 - Medford HM, Porter K, Marsh SA (2013) Immediate effects of a single exercise bout on pro-
tein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy. Am J Physiol Heart
Circ Physiol 305:H114–H123 - Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physi-
ological functions and human disease. Int J Biochem Cell Biol 39:44–84 - Kayama Y, Raaz U, Jagger A et al (2015) Diabetic cardiovascular disease induced by oxida-
tive stress. Int J Mol Sci 16:25234–25263 - Boudina S, Sena S, Theobald H et al (2007) Mitochondrial energetics in the heart in obe-
sityrelated diabetes: direct evidence for increased uncoupled respiration and activation of
uncoupling proteins. Diabetes 56:2457–2466 - Anderson EJ, Kypson AP, Rodriguez E et al (2009) Substrate-specific derangements in mito-
chondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart.
J Am Coll Cardiol 54:1891–1898 - Mahmoud AM, Ashour MB, Abdel-Moneim A et al (2012) Hesperidin and naringin attenuate
hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high
fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complicat 26:483–490 - Vazquez-Medina JP, Popovich I, Thorwald MA et al (2013) Angiotensin receptor-mediated
oxidative stress is associated with impaired cardiac redox signaling and mitochondrial func-
tion in insulin-resistant rats. Am J Physiol Heart Circ Physiol 305:H599–H607 - Cai L, Kang YJ (2003) Cell death and diabetic cardiomyopathy. Cardiovasc Toxicol
3:219–228 - Di FC, Cuzzocrea S, Rossi F et al (2006) Oxidative stress as the leading cause of acute myo-
cardial infarction in diabetics. Cardiovasc Drug Rev 24:77–87 - Tocchetti CG, Stanley BA, Sivakumaran V et al (2015) Impaired mitochondrial energy sup-
ply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dys-
function during type I diabetes. Clin Sci (Lond) 129:561–574 - Koncsos G, Varga ZV, Baranyai T et al (2016) Diastolic dysfunction in prediabetic male rats:
role of mitochondrial oxidative stress. Am J Physiol Heart Circ Physiol 311:H927–H943 - Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism.
Diabetes 54:1615–1625 - Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell
Cardiol 46(6):821–831 - Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224
- Shen X, Zheng S, Metreveli NS et al (2006) Protection of cardiac mitochondria by overex-
pression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805 - Radak Z, Taylor AW, Ohno H et al (2001) Adaptation to exercise-induced oxidative stress:
from muscle to brain. Exerc Immunol Rev 7:90–107 - Bo H, Jiang N, Ma G et al (2008) Regulation of mitochondrial uncoupling respiration during
exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2. Free
Radic Biol Med 44:1373–1381 - Muthusamy VR, Kannan S, Sadhaasivam K et al (2012) Acute exercise stress activates Nrf2/
ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol
Med 52:366–376 - Sanchez G, Escobar M, Pedrozo Z et al (2008) Exercise and tachycardia increase NADPH
oxidase and ryanodine receptor-2 activity: possible role in cardioprotection. Cardiovasc Res
77:380–386 - Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects
of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670 - Selemidis S, Sobey CG, Wingler K et al (2008) NADPH oxidases in the vasculature: molecu-
lar features, roles in disease and pharmacological inhibition. Pharmacol Ther 120:254–291
12 Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic...