Segal BH, Grimm MJ, Khan AN et al (2012) Regulation of innate immunity by NADPH
oxidase. Free Radic Biol Med 53:72–80
Xu Q, Dalic A, Fang L et al (2011) Myocardial oxidative stress contributes to transgenic
beta(2)-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol
162:1012–1028
Anilkumar N, Weber R, Zhang M et al (2008) Nox4 and nox2 NADPH oxidases mediate
distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc
Biol 28:1347–1354
Fukuda M, Nakamura T, Kataoka K et al (2010) Potentiation by candesartan of protective
effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in
obese mice. J Hypertens 28:340–352
Gao L, Mann GE (2009) Vascular NAD(P)H oxidase activation in diabetes: a double-edged
sword in redox signalling. Cardiovasc Res 82:9–20
Liu J, Zhou J, An W et al (2010) Apocynin attenuates pressure overloadinduced cardiac
hypertrophy in rats by reducing levels of reactive oxygen species. Can J Physiol Pharmacol
88:745–752
Zhao P, Zhang J, Yin XG et al (2013) The effect of trimetazidine on cardiac function in dia-
betic patients with idiopathic dilated cardiomyopathy. Life Sci 92:633–638
Li JM, Gall NP, Grieve DJ et al (2002) Activation of NADPH oxidase during progression of
cardiac hypertrophy to failure. Hypertension 40:477–484
Kuroda J, Ago T, Matsushima S et al (2010) NADPH oxidase 4 (Nox4) is a major source of
oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107:15565–15570
Sharma NM, Rabeler B, Zheng H et al (2016) Exercise training attenuates upregulation of
p47phox and p67phox in hearts of diabetic rats. Oxidative Med Cell Longev 2016:5868913, 1
Li J, Zhu H, Shen E et al (2010) Deficiency of rac1 blocks NADPH oxidase activation, inhib-
its endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of
type 1 diabetes. Diabetes 59:2033–2042
Shen E, Li Y, Li Y et al (2009) Rac1 is required for cardiomyocyte apoptosis during hypergly-
cemia. Diabetes 58:2386–2395
Grijalva J, Hicks S, Zhao X et al (2008) Exercise training enhanced myocardial endothe-
lial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovasc
Diabetol 7:34
Bidasee KR, Zheng H, Shao CH et al (2008) Exercise training initiated after the onset of dia-
betes preserves myocardial function: effects on expression of β adrenoceptors. J Appl Physiol
(1985) 105:907–914
Veeranki S, Givvimani S, Kundu S et al (2016) Moderate intensity exercise prevents diabetic
cardiomyopathy associated contractile dysfunction through restoration of mitochondrial
function and connexin 43 levels in db/db mice. J Mol Cell Cardiol 92:163–173
Crabtree MJ, Hale AB, Channon KM (2011) Dihydrofolate reductase protects endothelial
nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency. Free Radic Biol Med
50:1639–1646
Carnicer R, Crabtree MJ, Sivakumaran V et al (2013) Nitric oxide synthases in heart failure.
Antioxid Redox Signal 18:1078–1099
Zou MH, Shi C, Cohen RA (2002) Oxidation of the zincthiolate complex and uncoupling of
endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109:817–826
Kajstura J, Fiordaliso F, Andreoli AM et al (2001) IGF-1 overexpression inhibits the devel-
opment of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes
50:1414–1424
Frustaci A, Kajstura J, Chimenti C et al (2000) Myocardial cell death in human diabetes. Circ
Res 87:1123–1132
Jo H, Otani H, Jo F et al (2011) Inhibition of nitric oxide synthase uncoupling by sepiapterin
improves left ventricular function in streptozotocin-induced diabetic mice. Clin Exp
Pharmacol Physiol 38:485–493