165
Angelone T, Quintieri AM, Pasqua T, Filice E, Cantafio P, Scavello F et al (2015) The NO stimu-
lator, Catestatin, improves the Frank-Starling response in normotensive and hypertensive rat
hearts. Nitric Oxide 50:10–19
Bassino E, Fornero S, Gallo MP, Ramella R, Mahata SK, Tota B et al (2011) A novel catestatin-
induced antiadrenergic mechanism triggered by the endothelial PI3K-eNOS pathway in the
myocardium. Cardiovasc Res 91:617–624
Bassino E, Fornero S, Gallo MP, Gallina C, Femmino S, Levi R et al (2015) Catestatin exerts
direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulat-
ing PI3K-Akt-GSK3β pathway and preserving mitochondrial membrane potential. PlosOne.
doi:10.1371/journal.pone.0119790. eCollection 2015
Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem
Sci 28:145–151
Brar BK, Helgeland E, Mahata SK, Zhang K, O'Connor DT, Helle KB et al (2010) Human cates-
tatin peptides differentially regulate infarct size in the ischemic-reperfused rat heart. Regul
Pept 165:63–70
Brekke JF, Osol GJ, Helle KB (2002) N-terminal chromogranin-derived peptides as dilators of
bovine coronary resistance arteries. Regul Pept 105:93–100
Cappello S, Angelone T, Tota B, Pagliaro P, Penna C, Rastaldo R et al (2007) Human recombinant
chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide
signaling mechanism. Am J Physiol Heart Circ Physiol 293:H719–H727
Cerra MC, De Iuri L, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of
chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res
Cardiol 101:43–52
Cerra MC, Gallo MP, Angelone T, Quintieri AM, Pulera E, Filice E et al (2008) The homologous
rat chromogranin A1-64 (rCGA1-64) modulates myocardial and coronary function in rat heart
to counteract adrenergic stimulation indirectly via endothelium-derived nitric oxide. FASEB
J 22:3992–4004
Corti A, Ferrari R, Ceconi C (2000) Chromogranin A and tumor necrosis factor-alpha (TNF) in
chronic heart failure. Adv Exp Med Biol 482:351–359
Corti A, Mannarino C, Mazza R, Colombo B, Longhi R, Tota B (2002) Vasostatins exert negative
inotropism in the working heart of the frog. Ann N Y Acad Sci 971:362–365
Corti A, Mannarino C, Mazza R, Angelone T, Longhi R, Tota B (2004) Chromogranin A N-terminal
fragments vasostatin-1 and the synthetic CGA 7-57 peptide act as cardiostatins on the isolated
working frog heart. Gen Comp Endocrinol 136:217–224
Costa MD, Bosc LV, Majowicz MP, Vidal NA, Balaszczuk AM, Arranz CT (2000) Atrial natriuretic
peptide modifies arterial blood pressure through nitric oxide pathway in rats. Hypertension
35:1119–1123
Di Comite G, Morganti A (2011) Chromogranin A: a novel factor acting at the cross road between
the neuroendocrine and the cardiovascular systems. J Hypertens 29:409–414
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric
oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605
Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for
the cellular uptake of cationic cell-penetrating peptides. Traffic 8:848–866
Filice E, Pasqua T, Quintieri AM, Cantafio P, Scavello F, Amodio N et al (2015) Chromofungin,
CgA47-66-derived peptide, produces basal cardiac effects and postconditioning cardioprotec-
tive action during ischemia/reperfusion injury. Peptides 71:40–48
Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch
459:793–806
Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteogly-
can is a mechanosensor on endothelial cells. Circ Res 93:136–142
Fornero S, Bassino E, Gallo MP, Ramella R, Levi R, Alloatti G (2012) Endothelium dependent
cardiovascular effects of the Chromogranin A-derived peptides Vasostatin-1 and Catestatin.
Curr Med Chem 19:4059–4067
Signalling Pathways of CgA-Derived Peptides in Cardiac and endothelial cells