Chromogranins from Cell Biology to Physiology and Biomedicine

(nextflipdebug5) #1

166


Fornero S, Bassino E, Ramella R, Gallina C, Mahata SK, Tota B et  al (2014) Obligatory role
for endothelial heparan sulphate proteoglycans and caveolae internalization in Catestatin-
dependent eNOS activation. Biomed Res Int 2014:783623
Fung MM, Salem RM, Mehtani P, Thomas B, Lu CF, Perez B et al (2010) Direct vasoactive effects
of the chromogranin A (CHGA) peptide catestatin in humans in  vivo. Clin Exp Hypertens
32:278–287
Gallo MP, Levi R, Ramella R, Brero A, Boero O, Tota B et al (2007) Endothelium-derived nitric
oxide mediates the antiadrenergic effect of human vasostatin-1 in rat ventricular myocardium.
Am J Physiol Heart Circ Physiol 292:H2906–H2912
Hartell NA, Archer HE, Bailey CJ (2005) Insulin-stimulated endothelial nitric oxide release is
calcium independent and mediated via protein kinase B. Biochem Pharmacol 69:781–790
Hattori Y (1999) Cardiac histamine receptors: their pharmacological consequences and signal
transduction pathways. Methods Find Exp Clin Pharmacol 21:123–131
Helle KB (2010) The chromogranin A-derived peptides vasostatin-I and catestatin as regulatory
peptides for cardiovascular functions. Cardiovasc Res 85:9–16
Helle KB, Corti A (2015) Chromogranin A: a paradoxical player in angiogenesis and vascular biol-
ogy. Cell Mol Life Sci 72:339–348
Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: pur-
view and parameters. Nat Rev Mol Cell Biol 6:150–166
Imbrogno S, Angelone T, Corti A, Adamo C, Helle KB, Tota B (2004) Influence of vasostatins, the
chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative
inotropy and mechanism of action. Gen Comp Endocrinol 139:20–28
Imbrogno S, Garofalo F, Cerra MC, Mahata SK, Tota B (2010) The catecholamine release-
inhibitory peptide catestatin (chromogranin A344-364) modulates myocardial function in fish.
Exp Biol 213:3636–3643
Jones S, Howl J (2012) Enantiomer-specific bioactivities of peptidomimetic analogues of masto-
paran and mitoparan: characterization of inverso mastoparan as a highly efficient cell penetrat-
ing peptide. Bioconjug Chem 23:47–56
Kang YK, Yoo SH (1997) Identification of the secretory vesicle membrane binding region of chro-
mogranin A. FEBS Lett 404:87–90
Kennedy BP, Mahata SK, O'Connor DT, Ziegler MG (1998) Mechanism of cardiovascular actions
of the chromogranin A fragment catestatin in vivo. Peptides 19:1241–1248
Kruger PG, Mahata SK, Helle KB (2003) Catestatin (CgA344-364) stimulates rat mast cell release
of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides.
Regul Pept 114:29–35
Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH et  al (1995) Evidence
for a regulated interaction between heterotrimeric G proteins and caveolin. J  Biol Chem
270:15693–15701
Lopez-Quintero SV, Amaya R, Pahakis M, Tarbell JM (2009) The endothelial glycocalyx medi-
ates shear-induced changes in hydraulic conductivity. Am J  Physiol Heart Circ Physiol
296:H1451–H1456
Maget-Dana R, Metz-Boutigue MH, Helle KB (2002) The N-terminal domain of chromogranin A
(CgA1-40) interacts with monolayers of membrane lipids of fungal and mammalian composi-
tions. Ann N Y Acad Sci 971:352–354
Mahapatra NR, O'Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S et  al (2005)
Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog.
J Clin Invest 115:1942–1952
Mahata SK, Mahata M, Fung MM, O'Connor DT (2010) Catestatin: a multifunctional peptide
from chromogranin A. Regul Pept 162:33–43
Maniatis NA, Brovkovych V, Allen SE, John TA, Shajahan AN, Tiruppathi C et al (2006) Novel
mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization
in endothelial cells. Circ Res 99:870–877


G. Alloatti and M.P. Gallo
Free download pdf