549
- sets of 309
- uncertainties in 309
- waters of crystallization 311
- ZAF factors, microanalysis 317–324
k-ratio/matrix correction protocol - alkali element migration 349–353
- Ba-Ti interference 337–338
- beam-sensitive specimens 349
- complex metal alloy, IN100 340, 341
- with DTSA II 333–334
- Hall method 353–356
- instrumentation requirements 328
- iterative qualitative and quantitative analysis
strategy 338–339 - major constituents 334–336
- repeated qualitative–quantitative analysis
sequences 343–347 - specimen and standards 328
- specimen homogeneous 347–349
- stainless steel 340–343
L
Landing energy 79
Lead-acid battery plate reactions 494–495
Light-optical analogy, Everhart–Thornley
(positive bias) detector 131–133
Long-range secondary X-ray fluorescence 364
Low beam energy SEM
- backscattered electron signal
characteristics 182–185 - constituent 182
- extremely low beam energy imaging 187
- high depth resolution SEM 185–186
- for high lateral resolution SEM 185
- Kanaya–Okayama range 182
- secondary electron 182–185
Low beam energy X-ray microanalysis - advantage of
- improved spatial resolution 381–382
- low atomic number elements 382–385
- reduced matrix absorption correction 382
- challenges and limitations
- reduced access to elements 385–387
- surface layers 388–393
- vertical heterogeneity 387–388
- constitutes 376–380
- low beam energy analysis range 381
- peak selection strategy 380–381
M
Magnification vs. pixel dimension 163
Manganese nodule 483–488
Modeled detectors
- aluminum layer 261–263
- azimuthal angle 261
- crystal thickness 261
- dead layer 263
- detector area 261
- elevation angle 261
- energy scale 261
- gold layer 261–263
- material editor dialog 264–266
- Mn Kα, resolution at 261
- nickel layer 261–263
- number of channels 261
- optimal working distance 259–260
- panel containing properties 256, 257
- sample-to-detector distance 261
- window type 258–259
- zero offset 261
- zero strobe discriminator 263
Monte Carlo calculations - beam electron interaction volume 7–8
- composition 8–9
- electron interaction volume 7
- electron trajectory simulation 4–5
- incident beam energy 9–10
- Monte Carlo simulation (CASINO
simulation) 5–7 - size of the interaction volume 11–12
- specimen tilt 10–11
Monte Carlo electron trajectory
simulation 4–5
Monte Carlo simulation 5–7 - DTSA-II EDS software 267
- X-ray generation 62–63
N
National Institutes of Health (NIH) 204
NIST DTSA II simulation 364
O
Open Microscopy Environment
(OME) 204
Overscanning 414
P
Particle absorption effect 415–420
Particle analysis
- optimum spectra 410–414
- quantitative analysis of particles 415–420
- uncertainty in 420–422
- X-ray measurements 408–410
- X-ray spectrum imaging (XSI) 414–415
Particle mass effect 415
Particle sample preparation 413–414
Plugins 206–209
Q
Quantitative compositional mapping,
436–441
R
Robust light-optical analogy 131
S
Scanning electron microscope (SEM)
- compositional microstructure ix
- crystal structure xii–xiii
- dual-beam platforms, combined electron
and ion beams xiii–xiv - electron-optical parameters vii–ix
- elemental composition x–xii
- specimen property information ix–x
- three-dimensional structure ix–x
- topography ix, x
Scanning electron microscope (SEM) image
interpretation - compositional microstructure
- atomic number contrast, calculation
127–128 - atomic number contrast with backscattered
electrons 126–127 - BSE atomic number contrast with
Everhart–Thornley detector 128
- atomic number contrast, calculation
- information in 126
- specimen topography 128–129
- Everhart–Thornley detector 129–130
- light-optical analogy 130–133
- with semiconductor BSE detector
133–136
Scanning electron microscope (SEM) images
- Rose visibility criterion 139
- signal quality 138–145
- signal-to-noise ratio 138
Scanning electron microscope (SEM) imaging
checklist - beam current
- high resolution imaging 214
- low contrast features 214
- beam energy
- compositional contrast with backscattered
electrons 213 - high resolution SEM imaging 214
- topographic contrast with backscattered
electrons 213 - topographic contrast with secondary
electrons 213
- compositional contrast with backscattered
- electron detector
- backscattered electron detectors 213
- Everhart–Thornley detector 213
- electron signals available
- backscattered electrons 212
- beam electron range 212
- secondary electrons (SEs) 212–213
- image interpretation
- annular BSE detector 215
- contrast encoding 215
- direction of illumination 214
- Everhart–Thornley detector 215
- observer’s point of view 214
- semiconductor BSE detector 215
- image presentation
- live display adjustments 214
- post-collection processing 214
- specimen considerations 212
- VPSEM 215
Scanning electron microscope (SEM)
instrumentation - detective quantum efficiency (DQE)
101–103 - detector characteristics
- bandwidth 97
- electron detectors, angular
measures for 96–97 - energy response 97
- electron beam parameters 78
- electron detectors
- abundance 95
- angular distribution 95
- backscattered electrons 97–99
- kinetic energy response 95–96
AE–SP
Index