Scanning Electron Microscopy and X-Ray Microanalysis

(coco) #1
549


  • sets of 309

  • uncertainties in 309

  • waters of crystallization 311

  • ZAF factors, microanalysis 317–324
    k-ratio/matrix correction protocol

  • alkali element migration 349–353

  • Ba-Ti interference 337–338

  • beam-sensitive specimens 349

  • complex metal alloy, IN100 340, 341

  • with DTSA II 333–334

  • Hall method 353–356

  • instrumentation requirements 328

  • iterative qualitative and quantitative analysis
    strategy 338–339

  • major constituents 334–336

  • repeated qualitative–quantitative analysis
    sequences 343–347

  • specimen and standards 328

  • specimen homogeneous 347–349

  • stainless steel 340–343


L


Landing energy 79
Lead-acid battery plate reactions 494–495
Light-optical analogy, Everhart–Thornley
(positive bias) detector 131–133
Long-range secondary X-ray fluorescence 364
Low beam energy SEM



  • backscattered electron signal
    characteristics 182–185

  • constituent 182

  • extremely low beam energy imaging 187

  • high depth resolution SEM 185–186

  • for high lateral resolution SEM 185

  • Kanaya–Okayama range 182

  • secondary electron 182–185
    Low beam energy X-ray microanalysis

  • advantage of

    • improved spatial resolution 381–382

    • low atomic number elements 382–385

    • reduced matrix absorption correction 382



  • challenges and limitations

    • reduced access to elements 385–387

    • surface layers 388–393

    • vertical heterogeneity 387–388



  • constitutes 376–380

  • low beam energy analysis range 381

  • peak selection strategy 380–381


M


Magnification vs. pixel dimension 163
Manganese nodule 483–488
Modeled detectors



  • aluminum layer 261–263

  • azimuthal angle 261

  • crystal thickness 261

  • dead layer 263

  • detector area 261

  • elevation angle 261

  • energy scale 261

  • gold layer 261–263

  • material editor dialog 264–266

  • Mn Kα, resolution at 261

  • nickel layer 261–263

  • number of channels 261

    • optimal working distance 259–260

    • panel containing properties 256, 257

    • sample-to-detector distance 261

    • window type 258–259

    • zero offset 261

    • zero strobe discriminator 263
      Monte Carlo calculations

    • beam electron interaction volume 7–8

    • composition 8–9

    • electron interaction volume 7

    • electron trajectory simulation 4–5

    • incident beam energy 9–10

    • Monte Carlo simulation (CASINO
      simulation) 5–7

    • size of the interaction volume 11–12

    • specimen tilt 10–11
      Monte Carlo electron trajectory
      simulation 4–5
      Monte Carlo simulation 5–7

    • DTSA-II EDS software 267

    • X-ray generation 62–63




N
National Institutes of Health (NIH) 204
NIST DTSA II simulation 364

O
Open Microscopy Environment
(OME) 204
Overscanning 414

P
Particle absorption effect 415–420
Particle analysis


  • optimum spectra 410–414

  • quantitative analysis of particles 415–420

  • uncertainty in 420–422

  • X-ray measurements 408–410

  • X-ray spectrum imaging (XSI) 414–415
    Particle mass effect 415
    Particle sample preparation 413–414
    Plugins 206–209


Q
Quantitative compositional mapping,
436–441

R
Robust light-optical analogy 131

S
Scanning electron microscope (SEM)


  • compositional microstructure ix

  • crystal structure xii–xiii

  • dual-beam platforms, combined electron
    and ion beams xiii–xiv

  • electron-optical parameters vii–ix

  • elemental composition x–xii

  • specimen property information ix–x

    • three-dimensional structure ix–x

    • topography ix, x
      Scanning electron microscope (SEM) image
      interpretation

    • compositional microstructure

      • atomic number contrast, calculation
        127–128

      • atomic number contrast with backscattered
        electrons 126–127

      • BSE atomic number contrast with
        Everhart–Thornley detector 128



    • information in 126

    • specimen topography 128–129

      • Everhart–Thornley detector 129–130

      • light-optical analogy 130–133

      • with semiconductor BSE detector
        133–136
        Scanning electron microscope (SEM) images



    • Rose visibility criterion 139

    • signal quality 138–145

    • signal-to-noise ratio 138
      Scanning electron microscope (SEM) imaging
      checklist

    • beam current

      • high resolution imaging 214

      • low contrast features 214



    • beam energy

      • compositional contrast with backscattered
        electrons 213

      • high resolution SEM imaging 214

      • topographic contrast with backscattered
        electrons 213

      • topographic contrast with secondary
        electrons 213



    • electron detector

      • backscattered electron detectors 213

      • Everhart–Thornley detector 213



    • electron signals available

      • backscattered electrons 212

      • beam electron range 212

      • secondary electrons (SEs) 212–213



    • image interpretation

      • annular BSE detector 215

      • contrast encoding 215

      • direction of illumination 214

      • Everhart–Thornley detector 215

      • observer’s point of view 214

      • semiconductor BSE detector 215



    • image presentation

      • live display adjustments 214

      • post-collection processing 214



    • specimen considerations 212

    • VPSEM 215
      Scanning electron microscope (SEM)
      instrumentation

    • detective quantum efficiency (DQE)
      101–103

    • detector characteristics

      • bandwidth 97

      • electron detectors, angular
        measures for 96–97

      • energy response 97



    • electron beam parameters 78

    • electron detectors

      • abundance 95

      • angular distribution 95

      • backscattered electrons 97–99

      • kinetic energy response 95–96






AE–SP
Index

Free download pdf