Precision Medicine, CRISPR, and Genome Engineering Moving from Association to Biology and Therapeutics

(Dana P.) #1

98



  1. Krizaj D, Copenhagen DR.  Compartmentalization of calcium extrusion mechanisms in the
    outer and inner segments of photoreceptors. Neuron. 1998;21(1):249–56.

  2. George AA, et al. Synaptojanin 1 is required for endolysosomal trafficking of synaptic proteins
    in cone photoreceptor inner segments. PLoS One. 2014;9(1):e84394.

  3. Chen M, Van Hook MJ, Thoreson WB. Ca2+ diffusion through endoplasmic reticulum sup-
    ports elevated intraterminal Ca2+ levels needed to sustain synaptic release from rods in dark-
    ness. J Neurosci. 2015;35(32):11364–73.

  4. Krizaj D. Calcium stores in vertebrate photoreceptors. Adv Exp Med Biol. 2012;740:873–89.

  5. Giarmarco MM, Cleghorn W, Sloat SR, Hurley JB, Brockerhoff SE. Mitochondria maintain
    distinct Ca2+ domains in cone photoreceptors. J Neurosci. 2017;37(8):2061–72.

  6. Tarboush R, Novales Flamarique I, Chapman GB, Connaughton VP. Variability in mitochon-
    dria of zebrafish photoreceptor ellipsoids. Vis Neurosci. 2014;31(1):11–23.

  7. del Arco A, Satrustegui J. Molecular cloning of Aralar, a new member of the mitochondrial
    carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem.
    1998;273(36):23327–34.

  8. Pardo B, et al. Essential role of aralar in the transduction of small Ca2+ signals to neuronal
    mitochondria. J Biol Chem. 2006;281(2):1039–47.

  9. Kamer KJ, Mootha VK. The molecular era of the mitochondrial calcium uniporter. Nat Rev
    Mol Cell Biol. 2015;16(9):545–53.

  10. Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys
    Acta. 2009;1787(11):1309–16.

  11. McCormack JG, Longo EA, Corkey BE. Glucose-induced activation of pyruvate dehydroge-
    nase in isolated rat pancreatic islets. Biochem J. 1990;267(2):527–30.

  12. Nicholls DG. Mitochondria and calcium signaling. Cell Calcium. 2005;38(3–4):311–7.

  13. Tarasov AI, Griffiths EJ, Rutter GA. Regulation of ATP production by mitochondrial Ca(2+).
    Cell Calcium. 2012;52(1):28–35.

  14. Rasola A, Bernardi P.  Mitochondrial permeability transition in Ca(2+)-dependent apoptosis
    and necrosis. Cell Calcium. 2011;50(3):222–33.

  15. Giorgi C, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medi-
    cine. Mitochondrion. 2012;12(1):77–85.

  16. Sakurai K, Vinberg F, Wang T, Chen J, Kefalov VJ.  The Na(+)/Ca(2+), K(+) exchanger 2
    modulates mammalian cone phototransduction. Sci Rep. 2016;6:32521.

  17. Vinberg F, Wang T, Molday RS, Chen J, Kefalov VJ. A new mouse model for stationary night
    blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease.
    Hum Mol Genet. 2015;24(20):5915–29.

  18. Li M, Zhao L, Page-McCaw PS, Chen W. Zebrafish genome engineering using the CRISPR-
    Cas9 system. Trends Genet. 2016;32(12):815–27.

  19. Kok FO, et al. Reverse genetic screening reveals poor correlation between morpholino-induced
    and mutant phenotypes in zebrafish. Dev Cell. 2015;32(1):97–108.

  20. Rossi A, et al. Genetic compensation induced by deleterious mutations but not gene knock-
    downs. Nature. 2015;524(7564):230–3.

  21. Lawson ND. Reverse genetics in zebrafish: mutants, morphants, and moving forward. Trends
    Cell Biol. 2016;26(2):77–9.

  22. Stainier DY, Kontarakis Z, Rossi A. Making sense of anti-sense data. Dev Cell. 2015;32(1):7–8.

  23. Shah AN, Moens CB. Approaching perfection: new developments in zebrafish genome engi-
    neering. Dev Cell. 2016;36(6):595–6.

  24. Shah AN, Moens CB, Miller AC. Targeted candidate gene screens using CRISPR/Cas9 tech-
    nology. Methods Cell Biol. 2016;135:89–106.

  25. Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB. Rapid reverse genetic screening
    using CRISPR in zebrafish. Nat Methods. 2015;12(6):535–40.

  26. Talbot JC, Amacher SL. A streamlined CRISPR pipeline to reliably generate zebrafish frame-
    shifting alleles. Zebrafish. 2014;11(6):583–5.


S.E. Brockerhoff
Free download pdf