98
- Krizaj D, Copenhagen DR. Compartmentalization of calcium extrusion mechanisms in the
outer and inner segments of photoreceptors. Neuron. 1998;21(1):249–56. - George AA, et al. Synaptojanin 1 is required for endolysosomal trafficking of synaptic proteins
in cone photoreceptor inner segments. PLoS One. 2014;9(1):e84394. - Chen M, Van Hook MJ, Thoreson WB. Ca2+ diffusion through endoplasmic reticulum sup-
ports elevated intraterminal Ca2+ levels needed to sustain synaptic release from rods in dark-
ness. J Neurosci. 2015;35(32):11364–73. - Krizaj D. Calcium stores in vertebrate photoreceptors. Adv Exp Med Biol. 2012;740:873–89.
- Giarmarco MM, Cleghorn W, Sloat SR, Hurley JB, Brockerhoff SE. Mitochondria maintain
distinct Ca2+ domains in cone photoreceptors. J Neurosci. 2017;37(8):2061–72. - Tarboush R, Novales Flamarique I, Chapman GB, Connaughton VP. Variability in mitochon-
dria of zebrafish photoreceptor ellipsoids. Vis Neurosci. 2014;31(1):11–23. - del Arco A, Satrustegui J. Molecular cloning of Aralar, a new member of the mitochondrial
carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem.
1998;273(36):23327–34. - Pardo B, et al. Essential role of aralar in the transduction of small Ca2+ signals to neuronal
mitochondria. J Biol Chem. 2006;281(2):1039–47. - Kamer KJ, Mootha VK. The molecular era of the mitochondrial calcium uniporter. Nat Rev
Mol Cell Biol. 2015;16(9):545–53. - Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys
Acta. 2009;1787(11):1309–16. - McCormack JG, Longo EA, Corkey BE. Glucose-induced activation of pyruvate dehydroge-
nase in isolated rat pancreatic islets. Biochem J. 1990;267(2):527–30. - Nicholls DG. Mitochondria and calcium signaling. Cell Calcium. 2005;38(3–4):311–7.
- Tarasov AI, Griffiths EJ, Rutter GA. Regulation of ATP production by mitochondrial Ca(2+).
Cell Calcium. 2012;52(1):28–35. - Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis
and necrosis. Cell Calcium. 2011;50(3):222–33. - Giorgi C, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medi-
cine. Mitochondrion. 2012;12(1):77–85. - Sakurai K, Vinberg F, Wang T, Chen J, Kefalov VJ. The Na(+)/Ca(2+), K(+) exchanger 2
modulates mammalian cone phototransduction. Sci Rep. 2016;6:32521. - Vinberg F, Wang T, Molday RS, Chen J, Kefalov VJ. A new mouse model for stationary night
blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease.
Hum Mol Genet. 2015;24(20):5915–29. - Li M, Zhao L, Page-McCaw PS, Chen W. Zebrafish genome engineering using the CRISPR-
Cas9 system. Trends Genet. 2016;32(12):815–27. - Kok FO, et al. Reverse genetic screening reveals poor correlation between morpholino-induced
and mutant phenotypes in zebrafish. Dev Cell. 2015;32(1):97–108. - Rossi A, et al. Genetic compensation induced by deleterious mutations but not gene knock-
downs. Nature. 2015;524(7564):230–3. - Lawson ND. Reverse genetics in zebrafish: mutants, morphants, and moving forward. Trends
Cell Biol. 2016;26(2):77–9. - Stainier DY, Kontarakis Z, Rossi A. Making sense of anti-sense data. Dev Cell. 2015;32(1):7–8.
- Shah AN, Moens CB. Approaching perfection: new developments in zebrafish genome engi-
neering. Dev Cell. 2016;36(6):595–6. - Shah AN, Moens CB, Miller AC. Targeted candidate gene screens using CRISPR/Cas9 tech-
nology. Methods Cell Biol. 2016;135:89–106. - Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB. Rapid reverse genetic screening
using CRISPR in zebrafish. Nat Methods. 2015;12(6):535–40. - Talbot JC, Amacher SL. A streamlined CRISPR pipeline to reliably generate zebrafish frame-
shifting alleles. Zebrafish. 2014;11(6):583–5.
S.E. Brockerhoff