99
- Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a
CRISPR nuclease system. Proc Natl Acad Sci U S A. 2013;110(34):13904–9. - Ablain J, Durand EM, Yang S, Zhou Y, Zon LI. A CRISPR/Cas9 vector system for tissue-
specific gene disruption in zebrafish. Dev Cell. 2015;32(6):756–64. - Kwan KM, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon
transgenesis constructs. Dev Dyn. 2007;236(11):3088–99. - Yin L, et al. Multiplex conditional mutagenesis using transgenic expression of Cas9 and
sgRNAs. Genetics. 2015;200(2):431–41. - Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Small molecule-triggered Cas9
protein with improved genome-editing specificity. Nat Chem Biol. 2015;11(5):316–8. - Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable CRISPR-Cas9 for optogenetic
genome editing. Nat Biotechnol. 2015;33(7):755–60. - Deml B, et al. Mutations in MAB21L2 result in ocular Coloboma, microcornea and cataracts.
PLoS Genet. 2015;11(2):e1005002. - Serifi I, et al. The zebrafish homologs of SET/I2PP2A oncoprotein: expression patterns and
insights into their physiological roles during development. Biochem J. 2016;473(24):4609–27. - Sotolongo-Lopez M, Alvarez-Delfin K, Saade CJ, Vera DL, Fadool JM. Genetic dissection
of dual roles for the transcription factor six7 in photoreceptor development and patterning in
zebrafish. PLoS Genet. 2016;12(4):e1005968. - Taylor SM, et al. The bHLH transcription factor NeuroD governs photoreceptor genesis and
regeneration through delta-notch signaling. Invest Ophthalmol Vis Sci. 2015;56(12):7496–515. - Collery RF, Volberding PJ, Bostrom JR, Link BA, Besharse JC. Loss of zebrafish Mfrp causes
nanophthalmia, hyperopia, and accumulation of subretinal macrophages. Invest Ophthalmol
Vis Sci. 2016;57(15):6805–14. - Miesfeld JB, et al. Yap and Taz regulate retinal pigment epithelial cell fate. Development.
2015;142(17):3021–32. - Pooranachandran N, Malicki JJ. Unexpected roles for ciliary kinesins and intraflagellar trans-
port proteins. Genetics. 2016;203(2):771–85. - Brockerhoff SE, et al. A behavioral screen for isolating zebrafish mutants with visual system
defects. Proc Natl Acad Sci U S A. 1995;92(23):10545–9. - Muto A, et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet.
2005;1(5):e66. - Fadool JM, Brockerhoff SE, Hyatt GA, Dowling JE. Mutations affecting eye morphology in
the developing zebrafish (Danio rerio). Dev Genet. 1997;20:1–8. - Malicki J, et al. Mutations affecting development of the zebrafish retina. Development.
1996;123:263–73. - Suzuki SC, et al. Cone photoreceptor types in zebrafish are generated by symmetric terminal
divisions of dedicated precursors. Proc Natl Acad Sci U S A. 2013;110(37):15109–14. - Williams PR, et al. In vivo development of outer retinal synapses in the absence of glial con-
tact. J Neurosci. 2010;30(36):11951–61. - Yoshimatsu T, et al. Transmission from the dominant input shapes the stereotypic ratio of
photoreceptor inputs onto horizontal cells. Nat Commun. 2014;5:3699. - D’Orazi FD, Zhao XF, Wong RO, Yoshimatsu T. Mismatch of synaptic patterns between neu-
rons produced in regeneration and during development of the vertebrate retina. Curr Biol.
2016;26(17):2268–79. - Yoshimatsu T, et al. Presynaptic partner selection during retinal circuit reassembly varies with
timing of neuronal regeneration in vivo. Nat Commun. 2016;7:10590. - Lewis A, Williams P, Lawrence O, Wong RO, Brockerhoff SE. Wild-type cone photoreceptors
persist despite neighboring mutant cone degeneration. J Neurosci. 2010;30(1):382–9. - Morris AC, Schroeter EH, Bilotta J, Wong RO, Fadool JM. Cone survival despite rod degener-
ation in XOPS-mCFP transgenic zebrafish. Invest Ophthalmol Vis Sci. 2005;46(12):4762–71. - George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5′phosphatase of synapto-
janin 1 regulate autophagy in cone photoreceptors. BioEssays. 2016;38(Suppl 1):S119–35.
5 Genome Editing to Study Ca2+ Homeostasis in Zebrafish Cone Photoreceptors