39
Mizuseki K, Sakamoto T, Watanabe K et al (2003) Generation of neural crest-derived peripheral
neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci
U S A 100:5823–5833
Morino H, Matsuda Y, Muguruma K et al (2015) A mutation in the low voltage-gated calcium
channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar
ataxia. Mol Brain 8:89
Muguruma K (2016) Construction of iPS-derived functional brain tissues for investigation of dis-
ease mechanisms (Japanese). Exp Med 34:551–556
Muguruma K, Sasai Y (2012) In vitro recapitulation of neural development using embryonic stem
cells: From neurogenesis to histogenesis. Develop Growth Differ 54:349–357
Muguruma K, Nishiyama A, Ono Y et al (2010) Ontogeny-recapitulating generation and tissue
integration of ES cell-derived Purkinje cells. Nat Neurosci 13:1171–1180
Muguruma K, Nishiyama A, Kawakami H et al (2015) Self-organization of polarized cerebellar
tissue in 3D culture of human pluripotent stem cells. Cell Rep 10:537–550
Muñoz-Sanjuán I, Brivanlou AH (2002) Default model and embryonic stem cells. Nat Rev
Neurosci 3:271–280
Nakamura H, Katahira T, Matsunaga E et al (2005) Isthmus organizer for midbrain and hindbrain
development. Brain Res Brain Res Rev 49:12–126
Patani R, Hollins AJ, Wishart TM et al (2011) Retinoid-independent motor neurogenesis from
human embryonic stem cells reveals a medial columnar ground state. Nat Commun 2:214
Perrier A, Peschanski M (2012) How can human pluripotent stem cells help decipher and cure
Huntington’s disease? Cell Stem Cell 11:153–161
Perrier AL, Tabar V, Barberi T et al (2004) Derivation of midbrain dopamine neurons from human
embryonic stem cells. Proc Natl Acad Sci U S A 101:12543–12548
Salero E, Hatten ME (2007) Differentiation of ES cells into cerebellar neurons. Proc Natl Acad Sci
U S A 104:2997–3002
Sánchez-Danés A, Richaud-Patin Y, Carballo-Carbajal I et al (2012) Disease-specific phenotypes
in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s dis-
ease. EMBO Mol Med 4:380–395
Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D cul-
ture. Cell Stem Cell 12:520–530
Sasai Y, De Robertis EM (1997) ectodermal patterning in vertebrate embryos. Dev Biol 182:5–20
Sato T, Araki I, Nakamura H (2001) Inductive signal and tissue responsiveness defining the tectum
and the cerebellum. Development 128:2461–2469
Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to
cerebral cortex neurons and neural networks. Nat Protoc 10:1836–1846
Smukler SR, Runciman SB, Xu S et al (2006) Embryonic stem cells assume a primitive neural
stem cell fate in the absence of extrinsic influences. J Cell Biol 172:79–90
Stern CD (2006) Neural induction: 10 years on since the ‘default model’. Curr Opin Cell Biol
18:692–697
Su HL, Muguruma K, Matsuo-Takasaki M et al (2006) Generation of cerebellar neuron precursors
from embryonic stem cells. Dev Biol 290:287–296
Tao O, Shimazaki T, Okada Y et al (2010) Efficient generation of mature cerebellar Purkinje cells
from mouse embryonic stem cells. J Neurosci Res 88:234–247
Tropepe V, Hitoshi S, Sirard C et al (2001) Direct neural fate specification from embryonic stem
cells: A primitive mammalian neural stem cell stage acquired through a default mechanism.
Neuron 30:65–78
Vallier L, Reynolds D, Pedersen RA (2004) Nodal inhibits differentiation of human embryonic
stem cells along the neuroectodermal default pathway. Dev Biol 275:403–421
Wang S, Wang B, Pan N et al (2015) Differentiation of human induced pluripotent stem cells to
mature functional Purkinje neurons. Sci Rep 5:9232
Watanabe K, Kamiya D, Nishiyama A et al (2005) Directed differentiation of telencephalic precur-
sors from embryonic stem cells. Nat Neurosci 8:288–296
2 Self-Organized Cerebellar Tissue fromfiHuman Pluripotent Stem Cells andfiIts...