M =
φ
i
M
a
R
=
μ 0 2
272 / =
μ 0 2
2 2
a
p/R
? p = 7
- (a) : C^1
L
L
Þ
C 2 C+^12 C
We know that q = qm cos Zt
i = qmZ cos ωt+π
2
, i = i 0 cosωt+π
2
Maximum current i 0 = qmZ
where ω=
()+
1
LC 12 C
Maximum charge on (C 1 + C 2 )
qm =
i
(^0) iL 01 CC 2
ω
=+()
Maximum charge on C 1
=
+
×+()
C
CC
(^1) iLCC
12
012 = iC
L
(^01) CC 12 +
- (b) : In LC oscillation energy is transferred C to L
or L to C.
Maximum energy in L =
1
2
LImax^2
Maximum energy in C =
q
C
max
2
2
Equal energy will be when
1
2
LI^2 =
1
2
1
2
LI^2
max
I =
1
2
Imax I = Imax sinZt =
1
2
Imax
Zt =
π
4
or
2 π
T
t =
π
4
or t =
T
8
t =
1
8
2 π LC =
π
4
LC
- (c) : UU
U
max
==^1 , max
220
LI^2
⇒=
1
2
1
2
1
2
2
0
LI LI^2
⇒−Ie− =
t I
0
220
2
1
2
[]/τ
⇒=−=
− −
et/τ 1
1
2
21
2
⇒−=
−
t
τ
ln
21
(^2)
⇒=
−
t τln^2
21
⇒=
−
t L
R
ln^2
21
- (c) : For (LR) circuit
cos q =^3
5
q = 53° XL =
4
3
R 1
For (CR) circuit, cosθθ=⇒=⇒=
1
2
60 XRC (^32)
In LCR, power factor is 1 i.e., (XC – XL) is zero.
? (^) XXLC=⇒^4 RR=
3
123 ^
R
R
2
1
4
33
=
- (c) : e equation of a semi-circular wave is
x^2 + y^2 = a^2 or y^2 = a^2 – x^2
I
a
aydx
a
rms= −
+
∫
1
2
2
I
a
axdx
a
221 a 2
rms 2
=−
−
+
∫ ()
=−− =−
+
−
+
∫
1
2
1
23
22 2
3
a
axdx
a
ax
x
a
a
a
a
()
=−+−
=
1
233
2
3
3
3
3
32
a
a
a
a
aa
I
a
rms==a
2
3
2
3
2
- (b) : As resistance of the lamp
R
V
P
==s =
2
0
1002
50
200 Ω
e rms value of current is
I
V
R
== =
100
200
1
2
A.
So when the lamp is put in series with a capacitance
and run at 200 V ac, from V = IZ, we have
Z
V
I
== =
200
12
400
(/)
Ω
Now as in case of CR circuit,ZR
C
=+^2
1 2
ω
i.e., R
C
2
1 2
+ = 160000
ω
or,
1
16 10 200 12 10
2
42 4
ωC
=×−=() ×
(^1) 12 10 2
ωC
=×
C=
××
1
100 π 12 10^2
F==^100
12
50
π 3
μ
π
FFμ
- (d) : e
d
dt
Na
dB
dt
=− ==
φ 2
5 volt
- (d) : Aer a long time, steady state is reached in
which impedance due to inductor (ZL for dc) is