Effects on Development 655ylase in cultured fetal mesencephalic neurons and their activation increases the levels
of this enzyme. Brain Res 857:56–65
Insel TR (1995) The development of brain and behavior. In: Bloom FE, Kupfer DJ (eds)
Psychopharmacology: the four generation of progress. Raven Press, New York, pp 683–
694
Kumar AM, Haney M, Becker T, Thompson ML, Kream RM, Miczek K (1990) Effect of early
exposure to∆^9 -tetrahydrocannabinol on the levels of opioid peptides, gonadotropin-
releasing hormone and substance P in the adult male rat brain. Brain Res 525:78–83
Mailleux P, Vanderhaeghen JJ (1992a) Location of cannabinoid receptor in the human
developing and adult basal ganglia. Higher levels in the striatonigral neurons. Neurosci
Lett 148:173–176
Mailleux P, Vanderhaeghen JJ (1992b) Distribution of neuronal cannabinoid receptor in the
adult rat brain: a comparative receptor binding radioautography and in situ hybridiza-
tion histochemistry. Neuroscience 48:655–668
Mato S, Del Olmo E, Pazos A (2003) Ontogenetic development of cannabinoid receptor
expression and signal transduction functionality in the human brain. Eur J Neurosci
17:1747–1754
Mereu G, Fá M, Ferraro L, Cagiano R, Antonelli T, Tattoli M, Ghiglieri V, Tanganelli S, Gessa
GL, Cuomo V (2003) Prenatal exposure to a cannabinoid agonist produces memory
deficits linked to dysfunction in hippocampal long-term potentiation and glutamate
release. Proc Natl Acad Sci USA 100:4915–4920
MoklerDA,RobinsonSE,JohnsonJH,HongJS,RosecranaJA(1987)Neonataladministration
of∆^9 -tetrahydrocannabinol alters the neurochemical response to stress in the adult
Fischer-344 rat. Neurotoxicol Teratol 9:321–326Molina-Holgado F, Amaro A, Gonzalez I, Alvarez FJ, Leret ML (1996) Effects of maternal∆^9 -
tetrahydrocannabinolondevelopingserotoninergicneurons.EurJPharmacol316:39–42
Molina-Holgado F, Alvarez FJ, González I, Antonio MT, Leret ML (1997) Maternal exposure
to∆^9 -tetrahydrocannabinol (∆^9 -THC) alters indolamine levels and turnover in adult
male and female rat brain regions. Brain Res Bull 43:173–178
Murphy LL, Steger RW, Bartke A (1990) Psychoactive and non-psychoactive cannabinoids
and their effects on reproductive neuroendocrine parameters. In: Watson RR (ed)
Biochemistry and physiology of substance abuse, vol 2. CRC Press, Boca Raton, pp
73–94
Murphy LL, Gher J, Szary A (1995) Effects of prenatal exposure to∆^9 -tetrahydrocannabinol
on reproductive, endocrine and immune parameters of the male and the female rat
offspring. Endocrine 3:875–881
Navarro M, Rodríguez de Fonseca F, Hernández ML, Ramos JA, Fernández-Ruiz JJ (1994)
Motor behavior and nigrostriatal dopaminergicactivity in adultrats perinatally exposed
to cannabinoids. Pharmacol Biochem Behav 47:47–58
Navarro M, de Miguel R, Rodríguez F, Ramos JA, Fernández JJ (1996) Perinatal cannabinoid
exposuremodifiesthesociosexualapproachbehaviorandthemesolimbicdopaminergic
activity of adult male rats. Brain Res Dev Brain Res 75:91–98
PachecoMA,WardSJ,ChildersSR(1993)Identificationofcannabinoidsreceptorsincultures
of rat cerebellar granule cells. Brain Res 603:102–110
Panicker AK, Bulusi M, Theleu K, Maness PF (2003) Cellular signalling mechanisms of
neural cell adhesion molecules. Front Biosci 8:900–911
Pares-Herbute N,Tapia-Arancibia L,Artier H(1989) Ontogeny of the metencephalic,mesen-
cephalic and diencephalic content of catecholamines as measured by high performance
liquid chromatography with electrochemical detection. Int J Dev Neurosci 7:73–79
Park B, Gibbons HM, Mitchell MD, Glass M (2003) Identification of the CB1 cannabinoid
receptor and fatty acid amide hydrolase (FAAH) in the human placenta. Placenta 24:990–
995
Park B, McPartland JM, Glass M (2004) Cannabis, cannabinoids and reproduction. Prosta-
glandins Leukot Essent Fatty Acids 70:189–197