Synthetic Biology Parts, Devices and Applications

(Nandana) #1

104 5 Functional Requirements in the Program and the Cell Chassis for Next-Generation Synthetic Biology


107 Macvanin, M. and Adhya, S. (2012) Architectural organization in E. coli
nucleoid. Biochim. Biophys. Acta, 1819 , 830–835.
108 Rocha, E.P., Guerdoux‐Jamet, P., Moszer, I., Viari, A. et al. (2000) Implication of
gene distribution in the bacterial chromosome for the bacterial cell factory.
J. Biotechnol., 78 , 209–219.
109 Esnault, E., Valens, M., Espeli, O., and Boccard, F. (2007) Chromosome
structuring limits genome plasticity in Escherichia coli. PLos Genet., 3 , e226.
110 Touchon, M., Hoede, C., Tenaillon, O., Barbe, V. et al. (2009) Organised
genome dynamics in the Escherichia coli species results in highly diverse
adaptive paths. PLos Genet., 5 , e1000344.
111 Zhou, S., Kile, A., Bechner, M., Place, M. et al. (2004) Single‐molecule
approach to bacterial genomic comparisons via optical mapping. J. Bacteriol.,
186 , 7773–7782.
112 Rocha, E.P., Sekowska, A., and Danchin, A. (2000) Sulphur islands in the
Escherichia coli genome: markers of the cell’s architecture? FEBS Lett., 476 ,
8–11.
113 Espeli, O., Mercier, R., and Boccard, F. (2008) DNA dynamics vary according to
macrodomain topography in the E. coli chromosome. Mol. Microbiol., 68 ,
1418–1427.
114 Thanbichler, M., Wang, S.C., and Shapiro, L. (2005) The bacterial nucleoid: a
highly organized and dynamic structure. J. Cell. Biochem., 96 , 506–521.
115 Badrinarayanan, A., Le, T.B., and Laub, M.T. (2015) Bacterial chromosome
organization and segregation. Annu. Rev. Cell Dev. Biol., 31 , 171–199.
116 Morrow, J.D. and Cooper, V.S. (2012) Evolutionary effects of translocations in
bacterial genomes. Genome Biol. Evol., 4 , 1256–1262.
117 Rocha, E.P. and Danchin, A. (2003) Gene essentiality determines chromosome
organisation in bacteria. Nucleic Acids Res., 31 , 6570–6577.
118 Carballido‐Lopez, R. and Formstone, A. (2007) Shape determination in
Bacillus subtilis. Curr. Opin. Microbiol., 10 , 611–616.
119 Badrinarayanan, A., Lesterlin, C., Reyes‐Lamothe, R., and Sherratt, D. (2012)
The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization
independently of DNA replication. J. Bacteriol., 194 , 4669–4676.
120 Gouffi, K., Gerard, F., Santini, C.L., and Wu, L.F. (2004) Dual topology of the
Escherichia coli TatA protein. J. Biol. Chem., 279 , 11608–11615.
121 Rapp, M., Granseth, E., Seppala, S., and von Heijne, G. (2006) Identification
and evolution of dual‐topology membrane proteins. Nat. Struct. Mol. Biol., 13 ,
112–116.
122 Danchin, A. (2009) Cells need safety valves. Bioessays, 31 , 769–773.
123 Pliotas, C. and Naismith, J.H. (2016) Spectator no more, the role of the membrane
in regulating ion channel function. Curr. Opin. Struct. Biol., 45 , 59–66.
124 Ellis, R.J. (2001) Macromolecular crowding: obvious but underappreciated.
Trends Biochem. Sci, 26 , 597–604.
125 Spitzer, J. (2011) From water and ions to crowded biomacromolecules: in vivo
structuring of a prokaryotic cell. Microbiol. Mol. Biol. Rev., 75 , 491–506.
126 de Lorenzo, V., Sekowska, A., and Danchin, A. (2014) Chemical reactivity
drives spatiotemporal organization of bacterial metabolism. FEMS Microbiol.
Rev., 39 , 96–119.
Free download pdf