Synthetic Biology Parts, Devices and Applications

(Nandana) #1

154 7 Splicing and Alternative Splicing Impact on Gene Design


6 Sheth, N., Roca, X., Hastings, M.L., Roeder, T. et al. (2006) Comprehensive
splice-site analysis using comparative genomics. Nucleic Acids Res., 34 ,
3955–3967.
7 Black, D.L. (2003) Mechanisms of alternative pre-messenger RNA splicing.
Annu. Rev. Biochem., 72 , 291–336.
8 Moore, M.J., Query, C.C., and Sharp, P.A. (1993) 13 Splicing of
precursors to mRNA by the spliceosome, in The RNA World, CSHL Press,
pp. 303–357.
9 Chen, M. and Manley, J.L. (2009) Mechanisms of alternative splicing regulation:
insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol., 10 ,
741–754.
10 Will, C.L. and Lührmann, R. (2006) 13 Spliceosome structure and function,.
11 Wahl, M.C., Will, C.L., and Luhrmann, R. (2009) The spliceosome: design
principles of a dynamic RNP machine. Cell, 136 , 701–718.
12 Brow, D.A. (2002) Allosteric cascade of spliceosome activation. Annu. Rev.
Genet., 36 , 333–360.
13 Matlin, A.J., Clark, F., and Smith, C.W. (2005) Understanding alternative
splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol., 6 , 386–398.
14 Staley, J.P. and Woolford, J.L. Jr. (2009) Assembly of ribosomes and
spliceosomes: complex ribonucleoprotein machines. Curr. Opin. Cell Biol., 21 ,
109–118.
15 Bertram, K., Agafonov, D.E., Liu, W.T., Dybkov, O. et al. (2017) Cryo-EM structure
of a human spliceosome activated for step 2 of splicing. Nature, 542 , 318–323.
16 Wan, R., Yan, C., Bai, R., Huang, G. et al. (2016) Structure of a yeast catalytic
step I spliceosome at 3.4 A resolution. Science, 353 , 895–904.
17 Yan, C., Wan, R., Bai, R., Huang, G. et al. (2016) Structure of a yeast activated
spliceosome at 3.5 A resolution. Science, 353 , 904–911.
18 Fox-Walsh, K.L., Dou, Y., Lam, B.J., Hung, S.P. et al. (2005) The architecture of
pre-mRNAs affects mechanisms of splice-site pairing. Proc. Natl. Acad. Sci.
U.S.A., 102 , 16176–16181.
19 Berget, S.M. (1995) Exon recognition in vertebrate splicing. J. Biol. Chem., 270 ,
2411–2414.
20 Hoffman, B.E. and Grabowski, P.J. (1992) U1 snRNP targets an essential splicing
factor, U2AF65, to the 3′ splice site by a network of interactions spanning the
exon. Genes Dev., 6 , 2554–2568.
21 Reed, R. (2000) Mechanisms of fidelity in pre-mRNA splicing. Curr. Opin. Cell
Biol., 12 , 340–345.
22 Ke, S. and Chasin, L.A. (2010) Intronic motif pairs cooperate across exons to
promote pre-mRNA splicing. Genome Biol., 11 , R84.
23 Behzadnia, N., Hartmuth, K., Will, C.L., and Luhrmann, R. (2006) Functional
spliceosomal A complexes can be assembled in vitro in the absence of a penta-
snRNP. RNA, 12 , 1738–1746.
24 Schneider, M., Will, C.L., Anokhina, M., Tazi, J. et al. (2010) Exon definition
complexes contain the tri-snRNP and can be directly converted into B-like
precatalytic splicing complexes. Mol. cell, 38 , 223–235.
25 Tilgner, H., Knowles, D.G., Johnson, R., Davis, C.A. et al. (2012) Deep
sequencing of subcellular RNA fractions shows splicing to be predominantly
Free download pdf