Synthetic Biology Parts, Devices and Applications

(Nandana) #1
eferences 155

co-transcriptional in the human genome but inefficient for lncRNAs. Genome
Res., 22 , 1616–1625.
26 Vargas, D.Y., Shah, K., Batish, M., Levandoski, M. et al. (2011) Single-molecule
imaging of transcriptionally coupled and uncoupled splicing. Cell, 147 , 1054–1065.
27 Wood, V., Gwilliam, R., Rajandream, M.A., Lyne, M. et al. (2002) The genome
sequence of Schizosaccharomyces pombe. Nature, 415 , 871–880.
28 Fair, B.J. and Pleiss, J.A. (2017) The power of fission: yeast as a tool for
understanding complex splicing. Curr. Genet., 63 , 375–380.
29 Kaufer, N.F. and Potashkin, J. (2000) Analysis of the splicing machinery in fission
yeast: a comparison with budding yeast and mammals. Nucleic Acids Res., 28 ,
3003–3010.
30 Neuveglise, C., Marck, C., and Gaillardin, C. (2011) The intronome of budding
yeasts. C.R. Biol., 334 , 662–670.
31 Jeffares, D.C., Mourier, T., and Penny, D. (2006) The biology of intron gain and
loss. Trends Genet., 22 , 16–22.
32 Bon, E., Casaregola, S., Blandin, G., Llorente, B. et al. (2003) Molecular evolution
of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic
Acids Res., 31 , 1121–1135.
33 Davis, C.A., Grate, L., Spingola, M., and Ares, M. Jr. (2000) Test of intron
predictions reveals novel splice sites, alternatively spliced mRNAs and new
introns in meiotically regulated genes of yeast. Nucleic Acids Res., 28 , 1700–1706.
34 Lopez, P.J. and Seraphin, B. (1999) Genomic-scale quantitative analysis of yeast
pre-mRNA splicing: implications for splice-site recognition. RNA, 5 , 1135–1137.
35 Ma, P. and Xia, X. (2011) Factors affecting splicing strength of yeast genes.
Comp. Funct. Genomics, 2011 , 212146.
36 Ares, M. Jr., Grate, L., and Pauling, M.H. (1999) A handful of intron-containing
genes produces the lion’s share of yeast mRNA. RNA, 5 , 1138–1139.
37 Juneau, K., Miranda, M., Hillenmeyer, M.E., Nislow, C. et al. (2006) Introns
regulate RNA and protein abundance in yeast. Genetics, 174 , 511–518.
38 Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W. et al. (2003) Global
analysis of protein expression in yeast. Nature, 425 , 737–741.
39 Fedor, M.J. and Williamson, J.R. (2005) The catalytic diversity of RNAs. Nat. Rev.
Mol. Cell Biol., 6 , 399–412.
40 Cech, T.R. (1990. Nobel lecture.) Self-splicing and enzymatic activity of an
intervening sequence RNA from Tetrahymena. Biosci. Rep., 10 , 239–261.
41 Hausner, G., Hafez, M., and Edgell, D.R. (2014) Bacterial group I introns: mobile
RNA catalysts. Mob. DNA, 5 , 8.
42 McNeil, B.A., Semper, C., and Zimmerly, S. (2016) Group II introns: versatile
ribozymes and retroelements. Wiley Interdiscip. Rev. RNA, 7 , 341–355.
43 Toor, N., Keating, K.S., Taylor, S.D., and Pyle, A.M. (2008) Crystal structure of a
self-spliced group II intron. Science, 320 , 77–82.
44 Fica, S.M., Tuttle, N., Novak, T., Li, N.S. et al. (2013) RNA catalyses nuclear
pre-mRNA splicing. Nature, 503 , 229–234.
45 Jacquier, A. (1990) Self-splicing group II and nuclear pre-mRNA introns: how
similar are they? Trends Biochem. Sci, 15 , 351–354.
46 Rogozin, I.B., Carmel, L., Csuros, M., and Koonin, E.V. (2012) Origin and
evolution of spliceosomal introns. Biol. Direct, 7 , 11.

Free download pdf