Synthetic Biology Parts, Devices and Applications

(Nandana) #1

214 10 Programming Gene Expression by Engineering Transcript Stability Control and Processing in Bacteria


83 Cambray, G., Guimaraes, J.C., Mutalik, V.K., Lam, C. et al. (2013) Measurement
and modeling of intrinsic transcription terminators. Nucleic Acids Res., 1–10.
84 Kittle, J.D., Simons, R.W., Lee, J., and Kleckner, N. (1989) Insertion sequence
IS10 anti-sense pairing initiates by an interaction between the 5′ end of the
target RNA and a loop in the anti-sense RNA. J. Mol. Biol., 210 , 561–572.
85 Ross, J.A., Ellis, M.J., Hossain, S., and Haniford, D.B. (2013) Hfq restructures
RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10
system. RNA (New York, N.Y.), 19 , 670–684.
86 Møller, T., Franch, T., Højrup, P., Keene, D.R. et al. (2002) Hfq: a bacterial
Sm-like protein that mediates RNA–RNA interaction. Mol. Cell, 9 , 23–30.
87 Qi, L., Lucks, J.B., Liu, C.C., Mutalik, V.K. et al. (2012) Engineering naturally
occurring trans-acting non-coding RNAs to sense molecular signals.
Nucleic Acids Res., 40 , 5775–5786.
88 Qi, L., Haurwitz, R.E., Shao, W., Doudna, J.A. et al. (2012) RNA processing enables
predictable programming of gene expression. Nat. Biotechnol., 30 , 1002–1006.
89 Thimmaiah, T., Voje, W.E. Jr., and Carothers, J.M. (2015) Computational design
of RNA parts, devices, and transcripts with kinetic folding algorithms
implemented on multiprocessor clusters. Methods Mol. Biol., 1244 , 45–61.
90 Goikhman, M.Y., Yevlampieva, N.P., Kamanina, N.V., Podeshvo, I.V. et al.
(2011) New polyamides with main-chain cyanine chromophores. Polym. Sci.
Ser. A Polym. Phys., 53 , 457–468.
91 Carothers, J.M. (2013) Design-driven, multi-use research agendas to enable
applied synthetic biology for global health. Syst. Synth. Biol., 7 , 79–86.
92 Shuey, S. and Shah, M. (2007) Processes for conversion of tyrosine to
p-hydroxystyrene and p-acetoxystyrene. WO Patent 2,007,103,478 A2.
93 Qi, W.W., Vannelli, T., Breinig, S., Ben-Bassat, A. et al. (2007) Functional
expression of prokaryotic and eukaryotic genes in Escherichia coli for
conversion of glucose to p-hydroxystyrene. Metab. Eng., 9 , 268–276.
94 Bor-Sen, C., Wu, W.-S., Wang, Y.-C., and Wen-Hsiung, L. (2007) On the robust
circuit design schemes of biochemical networks: steady-state approach.
IEEE Trans. Biomed. Circuits Syst., 1 , 91–104.
95 Chubukov, V., Zuleta, I.A., and Li, H. (2012) Regulatory architecture
determines optimal regulation of gene expression in metabolic pathways.
Proc. Natl. Acad. Sci. U.S.A., 109 , 5127–5132.
96 Pan, T. and Sosnick, T. (2006) RNA folding during transcription. Annu. Rev.
Biophys. Biomol. Struct., 35 , 161–175.
97 Arraiano, C.M., Mauxion, F., Viegas, S.C., Matos, R.G. et al. (2013) Intracellular
ribonucleases involved in transcript processing and decay: precision tools for
RNA. Biochim. Biophys. Acta, 1829 , 491–513.
98 Saltelli, A., Ratto, M., Andres, T., Campolongo, F. et al. (2007) Global
Sensitivity Analysis. The Primer, John Wiley & Sons, Ltd., Chichester.
99 Nelson, P. and Yang, S. (1988) Some properties of Kendall’s partial rank
correlation coefficient. Stat. Probab. Lett., 6 , 147–150.
100 Paige, J.S., Nguyen-Duc, T., Song, W., and Jaffrey, S.R. (2012) Fluorescence
imaging of cellular metabolites with RNA. Science (New York, N.Y.), 335 , 1194.
101 Mutalik, V.K., Guimaraes, J.C., Cambray, G., Lam, C. et al. (2013) Precise and
reliable gene expression via standard transcription and translation initiation
elements. Nat. Methods, 10 , 354–360.
Free download pdf