Synthetic Biology Parts, Devices and Applications

(Nandana) #1
­eferences 213

67 Carrier, T.A. and Keasling, J.D. (1997) Engineering mRNA stability in E. coli by
the addition of synthetic hairpins using a 5′ cassette system. Biotechnol. Bioeng.,
55 , 577–580.
68 Chen, L.H., Emory, S.a., Bricker, A.L., Bouvet, P. et al. (1991) Structure and
function of a bacterial mRNA stabilizer: analysis of the 5′ untranslated region of
ompA mRNA. J. Bacteriol., 173 , 4578–4586.
69 Lopez, P.J. and Dreyfus, M. (1996) The lacZ mRNA can be stabilised by the T7
late mRNA leader in E coli. Biochimie, 78 , 408–415.
70 Blum, E. (1999) Polyadenylation promotes degradation of 3′-structured RNA by
the Escherichia coli mRNA degradosome in vitro. J. Biol. Chem., 274 , 4009–4016.
71 Wong, H.C. and Chang, S. (1986) Identification of a positive retroregulator that
stabilizes mRNAs in bacteria. Proc. Natl. Acad. Sci. U.S.A., 83 , 3233–3237.
72 Smolke, C.D., Carrier, T.A., and Keasling, J.D. (2000) Coordinated, differential
expression of two genes through directed mRNA cleavage and stabilization by
secondary structures. Appl. Environ. Microbiol., 66 , 5399–5405.
73 Sharma, V., Yamamura, A., and Yokobayashi, Y. (2012) Engineering artificial
small RNAs for conditional gene silencing in Escherichia coli. ACS Synth. Biol.,
1 , 6–13.
74 Ishikawa, H., Otaka, H., Maki, K., Morita, T. et al. (2012) The functional
Hfq-binding module of bacterial sRNAs consists of a double or single hairpin
preceded by a U-rich sequence and followed by a 3′ poly(U) tail. RNA (New
York, N.Y.), 18 , 1062–1074.
75 Na, D., Yoo, S.M., Chung, H., Park, H. et al. (2013) Metabolic engineering of
Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol., 31 ,
170–174.
76 Mutalik, V.K., Qi, L., Guimaraes, J.C., Lucks, J.B. et al. (2012) Rationally
designed families of orthogonal RNA regulators of translation. Nat. Chem. Biol.,
8 , 447–454.
77 Lucks, J.B., Qi, L., Mutalik, V.K., Wang, D. et al. (2011) Versatile RNA-sensing
transcriptional regulators for engineering genetic networks. Proc. Natl. Acad.
Sci. U.S.A., 108 , 8617–8622.
78 Lou, C., Stanton, B., Chen, Y.-J., Munsky, B. et al. (2012) Ribozyme-based
insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol.,
30 , 1137–1142.
79 Carothers, J.M., Goler, J.A., Kapoor, Y., Lara, L. et al. (2010) Selecting RNA
aptamers for synthetic biology: investigating magnesium dependence and
predicting binding affinity. Nucleic Acids Res., 38 , 2736–2747.
80 Lynch, S.A., Desai, S.K., Sajja, H.K., and Gallivan, J.P. (2007) A high-throughput
screen for synthetic riboswitches reveals mechanistic insights into their
function. Chem. Biol., 14 , 173–184.
81 Carrier, T.A. and Keasling, J.D. (1999) Library of synthetic 5′ secondary
structures to manipulate mRNA stability in Escherichia coli. Biotechnol. Progr.,
15 , 58–64.
82 Pfleger, B.F., Pitera, D.J., Smolke, C.D., and Keasling, J.D. (2006) Combinatorial
engineering of intergenic regions in operons tunes expression of multiple genes.
Nat. Biotechnol., 24 , 1027–1032.

Free download pdf