232 11 Small Functional Peptides and Their Application in Superfunctionalizing Proteins
51 Baruah, H. et al. (2008) An engineered aryl azide ligase for site‐specific mapping
of protein–protein interactions through photo‐cross‐linking. Angew. Chem. Int.
Ed., 47 (37), 7018–7021.
52 Puthenveetil, S. et al. (2009) Yeast display evolution of a kinetically efficient 13‐
amino acid substrate for lipoic acid ligase. J. Am. Chem. Soc., 131 (45), 16430–16438.
53 Uttamapinant, C. et al. (2010) A fluorophore ligase for site‐specific protein
labeling inside living cells. Proc. Natl. Acad. Sci. U.S.A., 107 (24), 10914–10919.
54 Slavoff, S.A. et al. (2011) Imaging protein‐protein interactions inside living cells
via interaction‐dependent fluorophore ligation. J. Am. Chem. Soc., 133 (49),
19769–19776.
55 Liu, D.S. et al. (2012) Diels‐Alder cycloaddition for fluorophore targeting to
specific proteins inside living cells. J. Am. Chem. Soc., 134 (2), 792–795.
56 Cohen, J.D., Zou, P., and Ting, A.Y. (2012) Site‐specific protein modification
using lipoic acid ligase and bis‐aryl hydrazone formation. ChemBioChem, 13 (6),
888–894.
57 Uttamapinant, C. et al. (2012) Fast, cell‐compatible click chemistry with
copper‐chelating azides for biomolecular labeling. Angew. Chem. Int. Ed., 51
(24), 5852–5856.
58 Liu, D.S. et al. (2012) Quantum dot targeting with lipoic acid ligase and HaloTag
for single‐molecule imaging on living cells. ACS Nano, 6 (12), 11080–11087.
59 Rhee, H.W. et al. (2013) Proteomic mapping of mitochondria in living cells via
spatially restricted enzymatic tagging. Science, 339 (6125), 1328–1331.
60 Cull, M.G. and Schatz, P.J. (2000) Biotinylation of proteins in vivo and in vitro
using small peptide tags. Methods Enzymol., 326 , 430–440.
61 Slavoff, S.A. et al. (2008) Expanding the substrate tolerance of biotin ligase
through exploration of enzymes from diverse species. J. Am. Chem. Soc., 130 (4),
1160–1162.
62 Beckett, D., Kovaleva, E., and Schatz, P.J. (1999) A minimal peptide substrate in
biotin holoenzyme synthetase‐catalyzed biotinylation. Protein Sci., 8 (4), 921–929.
63 Chen, I. et al. (2005) Site‐specific labeling of cell surface proteins with
biophysical probes using biotin ligase. Nat. Methods, 2 (2), 99–104.
64 Thyagarajan, A. and Ting, A.Y. (2010) Imaging activity‐dependent regulation of
neurexin‐neuroligin interactions using trans‐synaptic enzymatic biotinylation.
Cell, 143 (3), 456–469.
65 Jing, C. and Cornish, V.W. (2011) Chemical tags for labeling proteins inside
living cells. Acc. Chem. Res., 44 (9), 784–792.
66 Wombacher, R. and Cornish, V.W. (2011) Chemical tags: applications in live cell
fluorescence imaging. J. Biophotonics, 4 (6), 391–402.
67 Fernandez‐Suarez, M. and Ting, A.Y. (2008) Fluorescent probes for super‐
resolution imaging in living cells. Nat. Rev. Mol. Cell Biol., 9 (12), 929–943.
68 Grilly, C. et al. (2007) A synthetic gene network for tuning protein degradation
in Saccharomyces cerevisiae. Mol. Syst. Biol., 3 , 127.
69 Neuenschwander, M. et al. (2007) A simple selection strategy for evolving highly
efficient enzymes. Nat. Biotechnol., 25 (10), 1145–1147.
70 Andersen, J.B. et al. (1998) New unstable variants of green fluorescent protein
for studies of transient gene expression in bacteria. Appl. Environ. Microbiol.,
64 (6), 2240–2246.