Synthetic Biology Parts, Devices and Applications

(Nandana) #1
References 233

71 Butz, M. et al. (2011) An N‐terminal protein degradation tag enables robust
selection of highly active enzymes. Biochemistry, 50 (40), 8594–8602.
72 Jungbluth, M., Renicke, C., and Taxis, C. (2010) Targeted protein depletion in
Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst.
Biol., 4 , 176.
73 Urcuqui‐Inchima, S., Haenni, A.L., and Bernardi, F. (2001) Potyvirus proteins: a
wealth of functions. Virus Res., 74 (1–2), 157–175.
74 Tozser, J. et al. (2005) Comparison of the substrate specificity of two potyvirus
proteases. FEBS J., 272 (2), 514–523.
75 Kapust, R.B. et al. (2002) The P1′ specificity of tobacco etch virus protease.
Biochem. Biophys. Res. Commun., 294 (5), 949–955.
76 Gray, D.C., Mahrus, S., and Wells, J.A. (2010) Activation of specific apoptotic
caspases with an engineered small‐molecule‐activated protease. Cell, 142 (4),
637–646.
77 Henrichs, T. et al. (2005) Target‐directed proteolysis at the ribosome. Proc. Natl.
Acad. Sci. U.S.A., 102 (12), 4246–4251.
78 Kapust, R.B. and Waugh, D.S. (2000) Controlled intracellular processing of
fusion proteins by TEV protease. Protein Expression Purif., 19 (2), 312–318.
79 Wehr, M.C. et al. (2008) Analysis of transient phosphorylation‐dependent
protein‐protein interactions in living mammalian cells using split‐TEV. BMC
Biotech., 8 , 55.
80 Garcia, J.A., Riechmann, J.L., and Lain, S. (1989) Artificial cleavage site recognized
by plum Pox potyvirus protease in Escherichia coli. J. Virol., 63 (6), 2457–2460.
81 Sun, P. et al. (2010) Structural determinants of tobacco vein mottling virus
protease substrate specificity. Protein Sci., 19 (11), 2240–2251.
82 Zheng, N. et al. (2008) Specific and efficient cleavage of fusion proteins by
recombinant plum pox virus NIa protease. Protein Expression Purif., 57 (2),
153–162.
83 Nallamsetty, S. et al. (2004) Efficient site‐specific processing of fusion proteins
by tobacco vein mottling virus protease in vivo and in vitro. Protein Expression
Purif., 38 (1), 108–115.
84 Garcia, J.A. and Lain, S. (1991) Proteolytic activity of plum pox virus‐tobacco
etch virus chimeric NIa proteases. FEBS Lett., 281 (1–2), 67–72.
85 Zakeri, B. et al. (2012) Peptide tag forming a rapid covalent bond to a protein,
through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. U.S.A., 109 (12),
E690–E697.
86 Li, L. et al. (2014) Structural analysis and optimization of the covalent association
between SpyCatcher and a peptide Tag. J. Mol. Biol., 426 (2), 309–317.
87 Veggiani, G. et al. (2016) Programmable polyproteams built using twin peptide
superglues. Proc. Natl. Acad. Sci. U.S.A., 113 (5), 1202–1207.
88 Liu, Z. et al. (2014) A novel method for synthetic vaccine construction based on
protein assembly. Sci. Rep., 4 , 7266.
89 Sun, F. et al. (2014) Synthesis of bioactive protein hydrogels by genetically
encoded SpyTag‐SpyCatcher chemistry. Proc. Natl. Acad. Sci. U.S.A., 111 (31),
11269–11274.
90 Fosgerau, K. and Hoffmann, T. (2015) Peptide therapeutics: current status and
future directions. Drug Discovery Today, 20 (1), 122–128.

Free download pdf