Synthetic Biology Parts, Devices and Applications

(Nandana) #1

368 17 Synthetic Biology in Immunotherapy and Stem Cell Therapy Engineering


49 Cheng, M., Chen, Y., Xiao, W. et al. (2013) NK cell-based immunotherapy for
malignant diseases. Cell. Mol. Immunol., 10 (3), 230–252.
50 Hildebrandt, M., Peggs, K., Uharek, L. et al. (2014) Immunotherapy:
opportunities, risks and future perspectives. Cytotherapy, 16 (4 Suppl),
S120–S129.
51 Rosenberg, S.A. (2012) Raising the bar: the curative potential of human cancer
immunotherapy. Sci. Transl. Med., 4 (127), 127ps8.
52 Full, F., Lehner, M., Thonn, V. et al. (2010) T cells engineered with a
cytomegalovirus-specific chimeric immunoreceptor. J. Virol., 84 (8), 4083–4088.
53 Brentjens, R.J., Davila, M.L., Riviere, I. et al. (2013) CD19-targeted T cells
rapidly induce molecular remissions in adults with chemotherapy-refractory
acute lymphoblastic leukemia. Sci. Transl. Med., 5 (177), 177ra38.
54 Eshhar, Z., Waks, T., Gross, G., and Schindler, D.G. (1993) Specific activation
and targeting of cytotoxic lymphocytes through chimeric single chains
consisting of antibody-binding domains and the gamma or zeta subunits of the
immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. U.S.A., 90 (2),
720–724.
55 Imai, C., Mihara, K., Andreansky, M. et al. (2004) Chimeric receptors with
4-1BB signaling capacity provoke potent cytotoxicity against acute
lymphoblastic leukemia. Leukemia, 18 (4), 676–684.
56 Kowolik, C.M., Topp, M.S., Gonzalez, S. et al. (2006) CD28 costimulation
provided through a CD19-specific chimeric antigen receptor enhances in vivo
persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res.,
66 (22), 10995–11004.
57 Pulè, M.A., Straathof, K.C., Dotti, G. et al. (2005) A chimeric T cell antigen
receptor that augments cytokine release and supports clonal expansion of
primary human T cells. Mol. Ther., 12 (5), 933–941.
58 Song, D.-G., Ye, Q., Poussin, M. et al. (2012) CD27 costimulation augments the
survival and antitumor activity of redirected human T cells in vivo. Blood,
119  (3), 696–706.
59 Sadelain, M., Brentjens, R., and Rivière, I. (2009) The promise and potential
pitfalls of chimeric antigen receptors. Curr. Opin. Immunol., 21 (2), 215–223.
60 Maher, J., Brentjens, R.J., Gunset, G. et al. (2002) Human T-lymphocyte
cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28
receptor. Nat. Biotechnol., 20 (1), 70–75.
61 Hudecek, M., Lupo-Stanghellini, M.-T., Kosasih, P.L. et al. (2013) Receptor
affinity and extracellular domain modifications affect tumor recognition by
ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res., 19 (12),
3153–3164.
62 Carpenito, C., Milone, M.C., Hassan, R. et al. (2009) Control of large,
established tumor xenografts with genetically retargeted human T cells
containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. U.S.A., 106 (9),
3360–3365.
63 Lee, D.W., Kochenderfer, J.N., Stetler-Stevenson, M. et al. (2015) T cells
expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia
in children and young adults: a phase 1 dose-escalation trial. Lancet (London,
England), 385 (9967), 517–528.
Free download pdf