Synthetic Biology Parts, Devices and Applications

(Nandana) #1
References 77

61 Raleigh, E.A. (1992) Organization and function of the mcrBC genes of
Escherichia coli K-12. Mol. Microbiol., 6 , 1079–1086.
62 Liu, M., Durfee, T., Cabrera, J.E., Zhao, K. et al. (2005) Global transcriptional
programs reveal a carbon source foraging strategy by Escherichia coli. J. Biol.
Chem., 280 , 15921–15927.
63 Jackson, A.P., Thomas, G.H., Parkhill, J., and Thomson, N.R. (2009) Evolutionary
diversification of an ancient gene family (rhs) through C-terminal displacement.
BMC Genomics, 10 , 584.
64 Koli, P., Sudan, S., Fitzgerald, D., Adhya, S. et al. (2011) Conversion of
commensal Escherichia coli K-12 to an invasive form via expression of mutant
histone-like protein. mBio, 2 , e00182-11.
65 Smith, D.R. and Chapman, M.R. (2010) Economical evolution:
microbes reduce the synthetic cost of extracellular proteins. mBio, 1 ,
e00131-10–e00131-18.
66 Sung, B.H., Lee, C.H., Yu, B.J., Lee, J.H. et al. (2006) Development of a biofilm
production-deficient Escherichia coli strain as a host for biotechnological
applications. Appl. Environ. Microbiol., 72 , 3336–3342.
67 Napolitano, R., Janel-Bintz, R., Wagner, J., and Fuchs, R.P. (2000) All three
SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in
induced mutagenesis. EMBO J., 19 , 6259–6265.
68 Tippin, B., Pham, P., and Goodman, M.F. (2004) Error-prone replication for
better or worse. Trends Microbiol., 12 , 288–295.
69 Berdichevsky, A., Izhar, L., and Livneh, Z. (2002) Error-free recombinational
repair predominates over mutagenic translesion replication in E. coli. Mol. Cell,
10 , 917–924.
70 Yeiser, B., Pepper, E.D., Goodman, M.F., and Finkel, S.E. (2002) SOS-induced
DNA polymerases enhance long-term survival and evolutionary fitness. Proc.
Natl. Acad. Sci. U.S.A., 99 , 8737–8741.
71 Bethany, E.D., Sutera, V.A., and Lovett, S.T. (2007) RecA-independent
recombination is efficient but limited by exonucleases. Proc. Natl. Acad. Sci.
U.S.A., 104 , 216–221.
72 Sawitzke, J.A., Thomason, L.C., Costantino, N., Bubunenko, M. et al. (2007)
Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond.
Methods Enzymol., 421 , 171–199.
73 Yu, B.J., Sung, B.H., Koob, M.D., Lee, C.H. et al. (2002) Minimization of the
Escherichia coli genome using a Tn 5 -targeted Cre/loxP excision system.
Nat. Biotechnol., 20 , 1018–1023.
74 Krishnakumar, R., Grose, C., Haft, D.H., Zaveri, J. et al. (2014) Simultaneous
non-contiguous deletions using large synthetic DNA and site-specific
recombinases. Nucleic Acids Res., 42 , e111.
75 Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P. et al. (1989) New
method for generating deletions and gene replacement in Escherichia coli.
J. Bacteriol., 171 , 4617–4622.
76 Leenhouts, K., Buist, G., Bolhuis, A., ten Berge, A. et al. (1996) A general system
for generating unlabelled gene replacements in bacterial chromosomes. Mol.
Gen. Genet., 253 , 217–224.

Free download pdf