78 4 Rational Efforts to Streamline the Escherichia coli Genome
77 Reyrat, J.M., Pelicic, V., Gicquel, B., and Rappuoli, R. (1998) Counterselectable
markers: untapped tools for bacterial genetics and pathogenesis. Infection
Immun., 66 , 4011–4017.
78 Gay, P., LeCoq, D., Steinmetz, M., Berkelman, T. et al. (1985) Positive selection
procedure for entrapment of insertion sequence element in gram-negative
bacteria. J. Bacteriol., 164 , 918–921.
79 Link, A.J., Philips, D., and Church, G.M. (1997) Methods for generating precise
deletions and insertions in the genome of wild-type Escherichia coli: application
to open reading frame characterization. J. Bacteriol., 179 , 6228–6237.
80 Monteilhet, C., Perrin, A., Thierry, A., Colleaux, L. et al. (1990) Purification
and characterization of the in vitro activity of I-SceI, a novel and highly
specific endonuclease encoded by a group I intron. Nucleic Acids Res., 18 ,
1407–1413.
81 Pósfai, G., Kolisnychenko, V., Bereczki, Z., and Blattner, F.R. (1999) Markerless
gene replacement in Escherichia coli stimulated by a double-strand break in the
chromosome. Nucleic Acids Res., 27 , 4409–4415.
82 Datsenko, K.A. and Wanner, B.L. (2000) One-step inactivation of chromosomal
genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A.,
97 , 6640–6645.
83 Muyrers, J.P., Zhang, Y., Buchholz, F., and Stewart, A.F. (2000) RecE/RecT and
Redalpha/Redbeta initiate double-stranded break repair by specifically
interacting with their respective partners. Genes Dev., 14 , 1971–1982.
84 Yu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A. et al. (2000) An efficient
recombination system for chromosome engineering in Escherichia coli.
Proc. Natl. Acad. Sci. U.S.A., 97 , 5978–5983.
85 Kolisnychenko, V., Plunkett, G.I., Herring, C.D., Fehér, T. et al. (2002)
Engineering a reduced Escherichia coli genome. Genome Res., 12 , 640–647.
86 Jiang, W., Bikard, D., Cox, D., Zhang, F. et al. (2013) RNA-guided editing of
bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31 , 233–239.
87 Jiang, Y., Chen, B., Duan, C., Sun, B. et al. (2015) Multigene editing in the
Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol.,
81 , 2506–2514.
88 Li, Y., Lin, Z., Huang, C., Zhang, Y. et al. (2015) Metabolic engineering of
Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng., 31 ,
13–21.
89 Pyne, M.E., Moo-Young, M., Chung, D.A., and Chou, C.P. (2015) Coupling the
CRISPR/Cas9 system with lambda red recombineering enables simplified
chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol.,
81 , 5103–5114.
90 Reisch, C.R. and Prather, K.L.J. (2017) Scarless Cas9 assisted recombineering
(no-SCAR) in Escherichia coli, an easy-to-use system for genome editing. Curr.
Protoc. Mol. Biol., 117 , 31 8 1–31 8 20.
91 Standage-Beier, K., Zhang, Q., and Wang, X. (2015) Targeted large-scale deletion
of bacterial genomes using CRISPR-nickases. ACS Synth. Biol., 4 , 1217–1225.
92 Su, T., Liu, F., Gu, P., Jin, H. et al. (2016) A CRISPR-Cas9 assisted Non-
homologous End-joining strategy for one-step engineering of bacterial genome.
Sci. Rep., 6 , 37895.